Cognitive Neuroscience Society

The Journal of Cognitive Neuroscience

  • Facebook
  • RSS
  • Twitter
MENUMENU
  • Home
  • Annual Meeting
        • General Information
          • What to Expect at CNS 2023
          • CNS 2023 Mobile App
          • CNS 2023 Giveaway
          • CNS 2023 Giveaway Winners
          • Accessibility at CNS
          • General Information
          • Code of Conduct
          • Dates and Deadlines
          • Hotel Reservations
          • Poster Guidelines
          • Poster Printing Discount
          • Annual Meeting Workshop Policy & Application
          • Exhibit with us!
        • Program
          • Thank you to our Partners
          • CNS 2023 Program Booklet
          • Schedule Overview
          • Program-at-a-Glance
          • CNS 30th Anniversary Dance Party
          • Keynote Address
          • George A. Miller Awardee
          • Distinguished Career Contributions Awardee
          • Young Investigator Awardees
          • CNS at 30: Perspectives on the Roots, Present, and Future of Cognitive Neuroscience
          • Invited-Symposium Sessions
          • Symposium Sessions
          • Data Blitz Session Schedule
          • Poster Schedule & Session Information
          • JoCN Travel Fellowship Award
          • GSA/PFA Award Winners
          • Workshops, Socials & Special Events
        • Registration
          • Registration
          • Registration FAQ
          • Registration Policies, Cancellations & Refunds
        • News/Press
          • CNS 2023 Press Room
          • CNS 2022 Blog
          • CNS 2021 Blog
          • CNS 2020 Blog
        • Submissions
          • 2023 Poster Printing Discount
          • Submission Requirements
          • Submit a Poster
          • Submit a Symposium
          • GSA or PFA Application
          • Data Blitz
          • Frequently Asked Submission Questions
        • Archive
          • CNS 2020 Conference Videos
          • CNS 2019 Conference Videos
          • CNS 2018 Conference Videos
          • CNS 2017 Conference Videos
          • CNS 2016 Conference Videos
          • CNS 2015 Conference Videos
          • Previous Meetings Programs & Abstracts
  • About CNS
    • Boards and Committees
    • CNS Statement: Black Lives Matter
  • Membership
    • Information and Benefits
    • Join or Renew Membership
    • Membership FAQs
    • Member Discounts
    • Newsletter
      • Submit an Announcement
      • Current Newsletter
      • Newsletter FAQs
      • Past Newsletters
  • Awards
    • George A. Miller Award
    • Fred Kavli Distinguished Career Contributions Award
    • Young Investigator Award
    • Young Investigator Award Nominations
    • 2023 YIA Nomination Form
    • JoCN Travel Fellowship Award
  • News Center
    • CNS Blog
    • CNS 2023 Press Room
    • CNS 2022 Blog
    • CNS 2021 Blog
    • CNS 2020 Blog
    • CNS 2019 Blog
    • Blog Archives
    • Quick Tips for Getting Started on Twitter
    • Media Contact
  • My CNS
  • Contact Us
post

Dissecting Artificial Intelligence to Better Understand the Human Brain

March 25, 2018

CNS 2018 Press Release

March 25, 2018 – Boston – In the natural world, intelligence takes many forms. It could be a bat using echolocation to expertly navigate in the dark, or an octopus quickly adapting its behavior to survive in the deep ocean. Likewise, in the computer science world, multiple forms of artificial intelligence are emerging – different networks each trained to excel in a different task. And as will be presented today at the 25th annual meeting of the Cognitive Neuroscience Society (CNS), cognitive neuroscientists increasingly are using those emerging artificial networks to enhance their understanding of one of the most elusive intelligence systems, the human brain.

“The fundamental questions cognitive neuroscientists and computer scientists seek to answer are similar,” says Aude Oliva of MIT. “They have a complex system made of components – for one, it’s called neurons and for the other, it’s called units – and we are doing experiments to try to determine what those components calculate.”

In Oliva’s work, which she is presenting at the CNS symposium, neuroscientists are learning much about the role of contextual clues in human image recognition. By using “artificial neurons” – essentially lines of code, software – with neural network models, they can parse out the various elements that go into recognizing a specific place or object.

“The brain is a deep and complex neural network,” says Nikolaus Kriegeskorte of Columbia University, who is chairing the symposium. “Neural network models are brain-inspired models that are now state-of-the-art in many artificial intelligence applications, such as computer vision.”

In one recent study of more than 10 million images, Oliva and colleagues taught an artificial network to recognize 350 different places, such as a kitchen, bedroom, park, living room, etc. They expected the network to learn objects such as a bed associated with a bedroom. What they didn’t expect was that the network would learn to recognize people and animals, for example dogs at parks and cats in living rooms.

The machine intelligence programs learn very quickly when given lots of data, which is what enables them to parse contextual learning at such a fine level, Oliva says. While it is not possible to dissect human neurons at such a level, the computer model performing a similar task is entirely transparent. The artificial neural networks serve as “mini-brains that can be studied, changed, evaluated, compared against responses given by human neural networks, so the cognitive neuroscientists have some sort of sketch of how a real brain may function.”

It’s a uniquely exciting time to be working at the intersection of neuroscience, cognitive science, and AI. -Nikolaus Kriegeskorte

Indeed, Kriegeskorte says that these models have helped neuroscientists understand how people can recognize the objects around them in the blink of an eye. “This involves millions of signals emanating from the retina, that sweep through a sequence of layers of neurons, extracting semantic information, for example that we’re looking at a street scene with several people and a dog,” he says. “Current neural network models can perform this kind of task using only computations that biological neurons can perform. Moreover, these neural network models can predict to some extent how a neuron deep in the brain will respond to any image.”

Using computer science to understand the human brain is a relatively new field that is expanding rapidly thanks to advancements in computing speed and power, along with neuroscience imaging tools. The artificial networks cannot yet replicate human visual abilities, Kriegeskorte says, but by modeling the human brain, they are furthering understanding of both cognition and artificial intelligence. “It’s a uniquely exciting time to be working at the intersection of neuroscience, cognitive science, and AI,” he says.

Indeed, Oliva says; “Human cognitive and computational neuroscience is a fast-growing area of research, and knowledge about how the human brain is able to see, hear, feel, think, remember, and predict is mandatory to develop better diagnostic tools, to repair the brain, and to make sure it develops well.”

–

Oliva and Kriegeskorte are presenting in the symposium “Human and machine cognition: The deep learning challenge” at the CNS annual meeting in Boston. More than 1,500 scientists are attending the meeting from March 24-27, 2018.

CNS is committed to the development of mind and brain research aimed at investigating the psychological, computational, and neuroscientific bases of cognition. Since its founding in 1994, the Society has been dedicated to bringing its 2,000 members worldwide the latest research to facilitate public, professional, and scientific discourse.

Media contact:

Lisa M.P. Munoz, CNS Public Information Officer
cns.publicaffairs@gmail.com

 

 

 

 

 

By lmunoz Filed Under: featured Tagged With: artificial intelligence, cns 2018, machine learning, vision

Previous article: CNS 2018 Day 1 In Brief
Next article: CNS 2018 Day 2 In Brief

Recent Posts

  • Poverty: What’s the Brain Got to Do With It?
  • Unraveling Graceful Human Learning Over Time
  • Looking Forward to Understand Working Memory
  • From the Neurology Clinic to the Lab and Back Again: Addressing Frontal Lobe Syndromes
  • When Philosophical Questions Turn to Neuroscience Experimentation

Blog Archives

Quick Tips for Getting Started on Twitter

Cognitive Neuroscience Society
c/o Center for Mind and Brain
267 Cousteau Place, Davis, CA 95618
916-955-6080: for CNS Membership Questions
805-450-7490: for annual meeting questions about- registration, posters, symposium
916-409-5069: Fax Line
email: meeting@cogneurosociety.org

Recent Posts

  • Poverty: What’s the Brain Got to Do With It?
  • Unraveling Graceful Human Learning Over Time
  • Looking Forward to Understand Working Memory
  • From the Neurology Clinic to the Lab and Back Again: Addressing Frontal Lobe Syndromes
  • When Philosophical Questions Turn to Neuroscience Experimentation

Archives

Blog Archives

Previous Meeting Programs and Abstracts

Past Newsletters

All contents © Cognitive Neuroscience Society 1995-2019

Add to Calendar

Add to Calendar
04/16/2022 11:00 AM
04/16/2022 12:00 PM
America/Los_Angeles
How Prior Knowledge Shapes Encoding of New Memories
Description of the event
Grand Ballroom A
Create an Account

Login Utility