

Cognitive Neuroscience Society

24th Annual Meeting, March 25-28, 2017 Hyatt Regency Hotel, San Francisco, California

2017 Annual Meeting Program

Contents

2017 Committees & Staff	2
Schedule Overview	3
Keynote	7
George A Miller Prize	8
The Fred Kavli Distinguished Career	9
Contributions Award	9
Young Investigator Award	10
Special Events	11
Big Ideas	12
Data Blitz	13
General Information	16
Save the Date	18
Exhibits	19
GSA/PFA Awards	19
Invited-Symposium Sessions	20
Symposium Sessions	26
Poster Schedule	43
Poster Session A	44
Poster Session B	51
Poster Session C	58
Poster Session D	66
Poster Session E	73
Poster Session F	81
Advertisements	89
Floor Plan	90

A Supplement of the Journal of Cognitive Neuroscience

Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org

2017 Committees & Staff

Governing Board

Roberto Cabeza, Ph.D., Duke University Marta Kutas, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Daniel Schacter, Ph.D., Harvard University Michael S. Gazzaniga, Ph.D., University of California, Santa Barbara (ex officio) George R. Mangun, Ph.D., University of California, Davis (ex officio)

Patti Reuter-Lorenz, Ph.D., University of Michigan (ex officio)

Program Committee

Brad Postle, Ph.D., University of Wisconsin-Madison

Michael Anderson, Ph.D., University of Cambridge Manuel Carreiras, Ph.D., Basque Center on Cognition, Brain and Language, Spain Michael Chee, M.B.B.S., Duke University -NUS Graduate Medical School, Singapore Tobias Egner, Ph.D., Duke University Elizabeth Kensinger, Ph.D., Boston College Kia Nobre, Ph.D., University of Oxford

Sharon Thompson-Schill, Ph.D., University of Pennsylvania

Poster Committee

Marian Berryhill, Ph.D. University of Nevada, Reno (Chair) Evangelia Chrysikou, Ph.D., University of Kansas Brian Haas, Ph.D., University of Georgia Matthew Jerram, Ph.D., Suffolk University Jeffrey Johnson, Ph.D., University of Missouri Vishnu Murty, Ph.D., University of Pittsburgh Jonas Obleser, Ph.D., University of Lübeck, Germany Matthias Wieser, Ph.D., Erasmus University, Rotterdam, Netherlands

Lorna C. Quandt, Ph.D., Gallaudet University

Symposium Committee

Kelly Giovanello, Ph.D., University of North Carolina, Chapel Hill (Chair) Michael Cole, Ph.D., Rutgers University Ole Jensen, Ph.D., Radboud University of Netherlands Micah Murry, Ph.D., University of Lausanne Uta Noppeneny Ph.D., University of Birmingham Corianne Rogalsky, Ph.D., Arizona State University Daphna Shohamy, Ph.D., Columbia University

Young Investigator Award Committee

Cindy Lustig, Ph.D., University of Michigan (Chair) Marvin Chun, Ph.D., Yale University Michael Frank, Ph.D., Brown University Kevin Oschner, Ph.D., Columbia University Cathy Price, Ph.D., University College, London

Founding Committee (1994)

Michael S. Gazzaniga, Ph.D., University of California, Santa Barbara George R. Mangun, Ph.D., University of California, Davis Steve Pinker, Ph.D., Harvard University Patti Reuter-Lorenz, Ph.D., University of Michigan Daniel Schacter, Ph.D., Harvard University Art Shimamura, Ph.D., University of California, Berkeley

CNS Trainee Association (CNSTA)

Amy Belfi, Ph.D., New York University - President Tony Cunningham, Notre Dame - Vice President Alexandra (Lesya) Gaynor, CUNY Graduate Center Jacob Westerberg, Vanderbilt University Marty Fiati, Anglia Ruskin University Merage Ghane, Virginia Polytechnic Institute Samantha Cohen, CUNY Graduate Center Sarah Kark, Boston College

Administrative Staff

Kate Tretheway, Executive Director Sangay Wangmo, Administrative Assistant

TM Events, Inc. Meeting Staff

Tara Miller, Event Director Kerry Bosch, Meeting Planner Dustin Miller, Registration Manager Brenna Miller, Volunteer Manager Melissa Smith, Exhibits Manager Becky Gazzaniga, Event Associate Malissa Pelham. Event Associate

Volunteers

Anisha Adke, University of Oregon Jacky Au, University of California, Irvine Christina Bejjani, Duke University Rebecca Calcott, University of Oregon Tony Cunningham, University of Notre Dame Marieke Engbrenhof, University of Groninger Catherine Insel. Harvard University Sara Yunha Kim, University of Notre Dame Samika Kumar, UC Berkeley/UCSF Salahadin Lotfi, University of Wisconsin-Milwaukee Melanie Lucas, Ferkauf Graduate School of Psychology Katharina Menn, Radboud University Enmanuelle Pardilla-Delgado, University of Notre Dame Luke Rosedahl, UC Santa Barbara Stacey Seidl, UC Davis Yuan Tian, UC Davis Valerie Lee Valerio, University of California, San Diego Kelly Vaughn, University of Houston Khaing Win, University of Pennsylvania Xiaoye Zuo, University of California, Los Angeles Thomas Biba, University of San Francisco

Schedule Overview

Saturday, March 25, 2017

11:00 am - 4:00 pm

11.00 am = 4.00 pm	off-site registration at 16-registration officer in, ocacim r oyer
12:00 – 1:30 pm	Data Blitz Session 1, Bayview Room
	Data Blitz Session 2, Seacliff Room
1:30 – 2:00 pm	Coffee Service, Seacliff & Bayview Foyer
2:00 – 4:00 pm	Big Ideas in Cognitive Neuroscience, Co-sponsored by the Cognitive Neuroscience Society and the Max-Planck-
	Society, Chairs: Anna C. Nobre and Marc Raichle Bayview Room
4:00 – 6:30 pm	On-site Registration & Pre-Registration Check In, Grand Ballroom Foyer
4:00 – 5:00 pm	Keynote Address, Technology Meets Neuroscience - A Vision of the Future of Brain Fitness, Adam Gazzaley,
	University of California, San Francisco, Open to the Public, Grand Ballroom
4:30 – 5:00 pm	Poster Session A Set-Up, Pacific Concourse
4:30 – 7:00 pm	Exhibits Open, Pacific Concourse
5:00 – 7:00 pm	Poster Session A, Pacific Concourse
6:30 – 7:30 pm	Welcome Reception, Atrium
7:00 – 7:15 pm	Poster Session A Take-Down, Pacific Concourse
7:15 pm	Exhibit Hall Closed for the Day – No Entry
Sunday, March 26,	, 2017
7:30 – 8:00 am	Exhibit Hall Access for Exhibitors/Poster Session B Set-Up Only, Pacific Concourse
7:30 am – 6:30 pm	On-site Registration & Pre-Registration Check In, Grand Ballroom Foyer
8:00 – 8:30 am	Continental Breakfast, Pacific Concourse
8:00 – 10:00 am	Communications Open House, Press Room, Golden Gate Room
8:00 – 10:00 am	Poster Session B, Pacific Concourse
8:00 am - 12:00 pm	Exhibits Open, Pacific Concourse
10:00 am – 12:00 pm	Invited Symposium 1 Frontal Cortex Contributions to Decision Making, Chair: Elisabeth A. Murray, Ballroom A
▶ 10:00 – 10:30 am	Talk 1: From Knowledge to Action: The Role of the Primate Orbitofrontal Cortex, Betsy Murray
▶ 10:30 – 11:00 am	Talk 2: Dynamic Encoding of Choice in the Orbitofrontal Cortex, Erin Rich
▶ 11:00 – 11:30 am	Talk 3: Neural Mechanisms of Real-Time Embodied Decisions, Paul Cisek
► 11:30 am – 12:00 pm	Talk 4: Ventromedial Prefrontal Cortex Plays a Similar Role in Temporally-Extended Foraging-Style Decisions and Binary Choices, Joseph Kable
10:00 am – 12:00 pm	Invited Symposium 2 Cortical Oscillations in Hearing, Speech, and Language, Chair: David Poeppel, Ballroom B/C
► 10:00 – 10:30 am	Talk 1: Oscillatory Dynamics of Auditory Attention, Saskia Haegens
▶ 10:30 – 11:00 am	Talk 2: Timing Speech Content, Virginie van Wassenhove

On-site Registration & Pre-Registration Check In, Seacliff Foyer

➤ 10:30 – 11:00 am Talk 2: Timing Speech Content, Virginie van Wassenhove

11:00 – 11:30 am
 Talk 3: Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech, Nai Ding
 11:30 am – 12:00 pm
 Talk 4: Cortical Rhythms in Hearing, Speech, and Language: a Taxonomy, David Poeppel

11:30 – 11:45 am Poster B Take-Down, *Pacific Concourse*12:00 – 1:30 pm Lunch Break (Exhibit Hall Closed – No Entry)

1:30 – 2:00 pm Poster C Set-Up, Pacific Concourse 1:30 – 7:00 pm Exhibits Open, Pacific Concourse

1:30 – 3:30 pm Symposium 1 Are We Ready for Real-World Neuroscience Research?, Chairs: Pawel J. Matusz, *Ballroom A*

→ 1:30 – 1:54 pm Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling Of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 1: Using Voxel-Wise Modeling Of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 2: Using Voxel-Wise Modeling Of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 2: Using Voxel-Wise Modeling Of fMRI Responses to Natural Stories and Movies to Study Semantic

Talk 3: Using Voxel-Wise Modeling Of fMRI Responses to Natural Stories And Movies to Study Semantic

Talk 3: Using Voxel-Wise Modeling Of fMRI Responses to Study Semantic

Talk 3: Using Voxel-Wise Modeling

Representations in Human Cortex, Alex Huth

▶ 1:54 – 2:18 pm Talk 2: Learning and Connecting in the Real World: Conducting Neuroscience Research in High School Classrooms

and Museums, Suzanne Dikker

▶ 2:18 – 2:42 pm Talk 3: Social Communication Signals as Auditory Objects: Translational Insights from Neuronal-Level Research in

Non-Human Primates, Catherine Perrodin

► 2:42 – 3:06 pm	Talk 4: Brain and Cognitive Mechanisms Governing Object Attentional Selection in Naturalistic Environments, Pawel J. Matusz
► 3:06 – 3:30 pm	Q & A
1:30 – 3:30 pm	Symposium 2 Genetics and Cognitive Neuroscience: What does the Future Hold? , Chair: Ev Fedorenko, <i>Bayview Room</i>
► 1:30 – 1:54 pm	Talk 1: (Introduction): Genetics and Cognitive Neuroscience: How we Got Here, Where we are, and What the Future Holds. Ev Fedorenko
► 1:54 – 2:18 pm	Talk 2: Translating the Genome in Human Cognitive Neuroscience, Simon Fisher
► 2:18 – 2:42 pm	Talk 3: The Genetics of Brain Structure and its Functional Relevance — An International Collaborative Effort, Neda Jahanshad
► 2:42 – 3:06 pm	Talk 4: Linking Genes to Behavior Using Human Brain Gene Expression Data, Genevieve Konopka
► 3:06 – 3:30 pm	Talk 5: Transcriptional Variation Associated with Cortical Specialization and Connectivity, Fenna Krienen
1:30 − 3:30 pm ► 1:30 − 1:54 pm	Symposium 3 Multivariate Approaches for Neural Dynamics: It's About Time, Chair: Alex Clarke, Ballroom B/C Talk 1: Impulse Perturbations Reveal Dynamic Working Memory States in EEG, Michael Wolff
► 1:54 – 2:18 pm	Talk 2: Working Memory Replay Prioritizes Weakly Attended Events, Anna Jafarpour
► 2:18 – 2:42 pm	Talk 3: Neural Decomposition of Synergistic and Redundant Information In Interaction Between Audiovisual Speech Rhythms and Brain Oscillations, Hyojin Park
► 2:42 – 3:06 pm	Talk 4: Saccadic Eye Movements are Phase-Locked to Posterior Alpha Oscillations and Modulate Neural Communication During Memory Formation – Evidence from MEG, fMRI and Intracranial Data, Tobias Staudigl
► 3:06 – 3:30 pm	Talk 5: Understanding Meaning from our Senses: Representational Similarity Analysis of Source-Localised MEG Signals, Alex Clarke
3:30 – 4:00 pm	Coffee Service, Ballroom Foyer
4:00 – 5:00 pm	24th Annual George A. Miller Prize in Cognitive Neuroscience Lecture A Cortical Cartographer's View of Brain
	Structure, Function, Connectivity, Development, and Evolution, David C. Van Essen, Grand Ballroom
5:00 – 7:00 pm	Poster Session C, Pacific Concourse
7:00 – 7:15 pm	Poster Session C Take-Down, Pacific Concourse
7:15 pm	Exhibit Hall Closed for the Day – No Entry

Monday, March 27, 2017

7:30 – 8:00 am	Exhibit Hall Access for Exhibitors/Poster Session D Set-Up Only, Pacific Concourse
8:00 am - 12:00 pm	Exhibits Open, Pacific Concourse
8:00 am - 5:30 pm	On-site Registration & Pre-Registration Check In, Grand Ballroom Foyer
8:00 – 8:30 am	Continental Breakfast, Pacific Concourse
8:00 – 10:00 am	Communications Open House, Press Room, Golden Gate
8:00 – 10:00 am	Poster Session D, Pacific Concourse
10:00 am - 12:00 pm	Symposium 4 Working Memory: Sustained Activity or Dynamics?, Chair: Tim Buschman, Ballroom A
► 10:00 – 10:24 am	Talk 1: Working Memory: Sustained Activity? Not So Much. Earl Miller
► 10:24 – 10:48 am	Talk 2: Neural Substrates of Working Memory for Visual Motion, Tatiana Pasternak
► 10:48 – 11:12 am	Talk 3: Stability of Mind in a Dynamic Brain: Working Memory from a Dynamic Coding Framework, Mark Stokes
► 11:12 – 11:36 am	Talk 4: Stable Population Coding for Working Memory Coexists with Heterogeneous Neural Dynamics in Prefrontal Cortex, John Murray
► 11:36 – 12:00 pm	Discussion Period and Q&A
10:00 am – 12:00 pm	Symposium 5 Cognitive Maps in the Orbitofrontal Cortex for Goal-Directed Behavior, Chair: Thorsten Kahnt, Bayview Room
► 10:00 – 10:24 am	Talk 1: Orbitofrontal Cortex Represents a Cognitive Map of State Space, Nicolas W. Schuck
► 10:24 – 10:48 am	Talk 2: Goal-Directed Behavior and Cognitive Maps in Monkey Orbitofrontal Cortex: Evidence from Lesion and Neurophysiology Studies, Peter Rudebeck
► 10:48 – 11:12 am	Talk 3: Orbitofrontal State Representations Fall Apart in Interesting Ways Without Hippocampal Output, Geoffrey Schoenbaum

► 11:12 – 11:36 am	Talk 4: Computational and Representational Analysis Approaches to Associative Learning, Erie Boorman
► 11:36 – 12:00 pm	Talk 5: Flexible State Representations of Specific Rewards in the Human Orbitofrontal Cortex, Thorsten Kahnt
10:00 am – 12:00 pm	Symposium 6 Top-Down Functions of Neural Oscillations for Speech and Language Processing , Chair: Lars Meyer, <i>Ballroom B/C</i>
▶ 10:00 – 10:24 am	Talk 1: Delta-Band Oscillations Impose Syntactic Structure upon Speech, Aligning Excitability with Linguistic Informativity, <i>Lars Meyer</i>
► 10:24 – 10:48 am	Talk 2: Low-Frequency Oscillations Mediate Top-Down Activity During Speech Processing, Nicola Molinaro
► 10:48 – 11:12 am	Talk 3: Language Prediction is Supported by Coupling between Frontal Gamma and Posterior Alpha Oscillations, Lin Wang
► 11:12 – 11:36 am	Talk 4: Attention Governs Neural Oscillatory Responses to Speech, Malte Wöstmann
► 11:36 – 12:00 pm	Talk 5: Low– and High-Level Processes Underlying Oscillatory Phase Entrainment to Speech Sounds, Benedikt Zoefel
11:30 – 11:45 am	Poser Session D Take-Down, Pacific Concourse
12:00 – 1:30 pm	Lunch Break (Exhibit Hall Closed – No Entry)
12:15 – 1:15 pm	What You Need to Know about NIH Funding: Training and Research Grant Opportunities, Kathy Mann Koepke, NICHD/NIH, Bayview Room
1:30 – 2:00 pm	Poster Session E Set-Up, Pacific Concourse
1:30 – 2:30 pm	The Fred Kavli distinguished Career Contributions in Cognitive Neuroscience Lecture Understanding the Subjective Experience of Remembering , Marcia Johnson, <i>Grand Ballroom</i>
1:30 – 5:30 pm	Exhibits Open, Pacific Concourse
2:30 – 4:30 pm	Poster Session E, Pacific Concourse
3:30 – 4:00 pm	Coffee Service, Pacific Concourse
4:30 – 5:30 pm	YIA 1 Neurodevelopmental Mechanisms Underlying Normative Shifts in Goal-Directed Behavior, Leah
	Somerville, Ballroom A
5:00 – 5:30 pm	YIA 2 Statistical learning as a new take on memory systems, Nicholas Turk-Browne, Ballroom A
5:30 – 5:45 pm	Poster Session E Take-Down, Pacific Concourse
5:45 pm	Exhibit Hall Closed for the Day – No Entry
5:30 – 7:00 pm	CNS Trainee Professional Development Panel, Bayview Room
7:00 – 10:00 pm	CNS Student Trainee Social Night, Monroe Bar

Tuesday, March 28, 2017

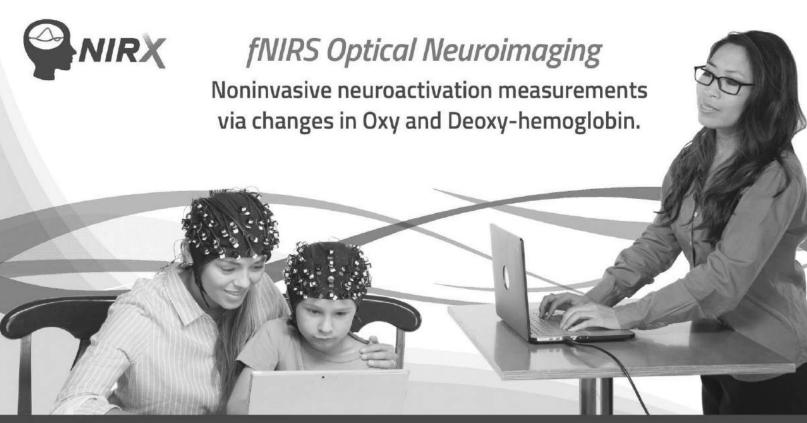
• •	·		
7:30 am - 8:00 am	Exhibit Hall Access for Exhibitors/Poster Session F Set-Up Only, Pacific Concourse		
8:00 am - 12:00 pm	Exhibits Open, Pacific Concourse		
8:00 am - 3:00 pm	On-site Registration & Pre-Registration Check In, Grand Ballroom Foyer		
8:00 – 8:30 am	Continental Breakfast, Pacific Concourse		
8:00 – 10:00 am	Poster Session F, Pacific Concourse		
10:00 am - 12:00 pm	Symposium 7 Driving the Brain to Understand Cognition, Chair: Jim Herring, Bayview Room		
► 10:00 – 10:24 am	Talk 1: Shaping Brain Waves: An Information-Based Approach, Vincenzo Romei		
► 10:24 – 10:48 am	Talk 2: Engaging Cortical Oscillations with Transcranial Alternating Current Stimulation, Flavio Frohlich		
► 10:48 – 11:12 am	Talk 3: Driving Visual Brain Rhythms Through Dynamic Sensory Stimulation, Christian Keitel		
► 11:12 – 11:36 am	Talk 4: The Causal Role of Neural Entrainment in Speech Comprehension, Anne Kösem		
► 11:36 – 12:00 pm	Talk 5: Attentional Modulation of Externally Driven Alpha Oscillations, Jim D. Herring		
10:00 am - 12:00 pm	Symposium 8 Deciding How to Decide: Understanding When and Why the Brain Allocates Computational		
	Resources to Goal-Directed Behavior, Chair: Ross Otto, Ballroom A		
▶ 10:00 – 10:24 am	Talk 1: Motivational Biases in Learning and Choice, Hanneke den Ouden		
► 10:24 – 10:48 am	Talk 2: Working Memory Contributes to Reinforcement Learning Computations, Anne Collins		
▶ 10:48 – 11:12 am	Talk 3: Neurocomputational Principles of Meta-Control in Reinforcement Learning, Sam Gershman		
► 11:12 – 11:36 am	Talk 4: Weighing the Costs and Benefits of Mental Effort, Amitai Shenhav		
▶ 11:36 – 12:00 pm	Talk 5: The Opportunity Cost of Time Modulates Cognitive Effort Expenditure, Ross Otto		

10:00 am – 12:00 pm	Symposium 9 Memory Neuromodulation: How do Different States of Learning Influence Episodic Memory?, Chair: Vishnu Murty, <i>Ballroom B/C</i>
 10:00 - 10:24 am 10:24 - 10:48 am 10:48 - 11:12 am 11:12 - 11:36 am 11:36 - 12:00 pm 	Talk 1: The Lingering Influence of Novelty Shapes Fundamental Memory Processes. Katherine Duncan Talk 2: Motivation Facilitates Memory at Multiple Timescales in Service of Adaptive Behavior. Vishnu Murty Talk 3: States of Reward and Curiosity Prioritize Learning and Post-Learning Dynamics, Matthias Gruber Talk 4: Exploration Modulates Hippocampal-Cortical Contributions to Episodic Learning, Joel Voss Talk 5: A Potential Role for Norepinephrine Hot Spots in Long-Term Memory for Negative Stimuli. Mara Mather
11:45 am – 12:00 pm	Poster Session F Take-Down, Pacific Concourse
12:00 pm	Exhibit Hall Closed for the Day – No Entry
12:00 – 1:30 pm	Lunch Break
1:30 – 3:30 pm	Invited Symposium 3 The Lapsing Brain: How Attentional Fluctuations Impact Cognition , Chair: Edward Vogel, Ballroom A
 1:30 - 2:00 pm 2:00 - 2:30 pm 2:30 - 3:00 pm 	Talk 1: Attentional Lapses Drive Individual Differences in Working Memory Capacity, Kirsten C. S. Adam Talk 2: Hippocampal Representations of Attentional State Predict the Formation of Episodic Memory, Mariam Aly Talk 3: Clarifying the Roles of Task-Positive and Task-Negative Networks in Attentional Fluctuations, Michael Esterman
▶ 3:00 – 3:30 pm	Talk 4: Mind Wandering as Spontaneous Thought: A Dynamic Framework, Kalina Christoff
1:30 – 3:30 pm	Invited Symposium 4 Brain Network Specialization Through Adolescence Supporting Stabilization of Cognitive and Affective Brain Systems, Chair: Beatriz Luna, Ballroom B/C
► 1:30 – 2:00 pm	Talk 1: Changes in the Integration of Brain Processes Supporting the Transition from Adolescent to Adult Level Cognitive Control, Beatriz Luna
► 2:00 – 2:30 pm	Talk 2: At Risk of Being Risky: The Relationship Between "Brain Age" Under Emotional States and Risk Preference, Damien Fair
► 2:30 – 3:00 pm	Talk 3: Decision, Reward, and Social Processing in Adolescent Brain Development, Jason Chein
▶ 3:00 – 3:30 pm	Talk 4: Multiple learning systems in the adolescent brain: The influence of motivated learning on episodic memory and cognitive control. Juliet Y. Davidow
► 3:30 – 3:40 pm	Q & A

Keynote

Adam Gazzaley, MD, Ph.D.

University of California, San Francisco


Keynote Address, Open to the Public

Saturday, March 25, 2017, 4:00 - 5:00 pm, Grand Ballroom

Technology meets Neuroscience – A Vision of the Future of Brain Fitness

A fundamental challenge of modern society is the development of effective approaches to enhance brain function and cognition in both the healthy and impaired. For the healthy, this should be a core mission of our educational system and for the cognitively impaired this is the primary goal of our medical system. Unfortunately, neither of these systems have effectively met this challenge. I will describe a novel approach out of our lab that uses custom-designed video games to achieve meaningful and sustainable cognitive enhancement via personalized closed-loop systems (Nature 2013; Neuron 4014). I will also share with you the next stage of our research program, which integrates our video games with the latest technological innovations in software (e.g., brain computer interface algorithms, GPU computing, cloud-based analytics) and hardware (e.g., virtual reality, mobile EEG, motion capture, physiological

recording devices (watches), transcranial brain stimulation) to further enhance our brain's information processing systems with the ultimate aim of improving quality of life.

User-Friendly

Lifetime Support

Versatile Upgrades

George A Miller Prize

Congratulations to David C. Van Essen for being awarded this honor!

David C. Van Essen will accept this prestigious award and deliver his lecture on Sunday, March 26, 2017, 4:00 – 5:00 pm, in the Grand Ballroom.

A Cortical Cartographer's View of Brain Structure, Function, Connectivity, Development, and Evolution

David C. Van Essen

Alumni Endowed Professor, Department of Neuroscience, Washington University in St. Louis

The cerebral cortex is the dominant structure of the mammalian brain, and it plays critical but diverse roles in cognition, perception, emotion, and motor control. This lecture will review recent progress in elucidating the structure, function, connectivity, development, and evolution of cerebral cortex in humans and nonhuman primates. Underlying methodological

themes will include the power of surface-based analysis and visualization and the importance of user-friendly data sharing for accelerating progress in exploring these topics. Consideration of cortical development will include questions of why the cortex is a sheet whose convolutions vary across species and across individuals. Advances in elucidating functional organization include a recent multimodal human cortical parcellation, based on data from the Human Connectome Project (HCP), that reveals 180 distinct areas in each hemisphere. The ability to accurately parcellate the cortex in individual subjects will enable systematic analyses of individual variability in relation to many neurobiologically informative features as well as hundreds of behavioral measures that are part of the freely shared HCP data. Comparisons with nonhuman primates, including chimpanzees as well as macaque monkeys, provide intriguing evolutionary insights regarding the dramatic expansion of neocortical regions associated with higher cognition in the human lineage.

About the George A. Miller Prize in Cognitive Neuroscience

The George A. Miller Prize in Cognitive Neuroscience was established in 1995 by the Cognitive Neuroscience Society to honor the innovative scholarship of George A. Miller, whose many theoretical advances have greatly influenced the discipline of cognitive neuroscience. The first ten years of the prize were funded by generous support from the James S. McDonnell Foundation.

Each year the Prize shall recognize an individual whose distinguished research is at the cutting-edge of their discipline with realized or future potential, to revolutionize cognitive neuroscience. Extraordinary innovation and high impact on international scientific thinking should be a hallmark of the recipient's work.

An annual call for nominations for the George A. Miller Prize will be made to the membership of the society. The recipient of the prize will attend the annual meeting of the Cognitive Neuroscience Society and deliver the George A. Miller lecture.

Previous Winners of the George A. Miller Lectureship

2016	Brian Wandell, Isaac and Madeline Stein Family Professor
2015	Patricia Kuhl, Ph.D., University of Washington
2014	Jon Kaas, Ph.D., Vanderbilt University
2013	Fred Gage, Ph.D., The Salk Institute
2012	Eve Marder, Ph.D., Brandeis University
2011	Mortimer Mishkin, Ph.D., NIMH
2010	Steven Pinker, Ph.D., Harvard University
2009	Marcus Raichle, Ph.D., Washington University School of Medicine
2008	Anne Treisman, Ph.D., Princeton University
2007	Joaquin M. Fuster, Ph.D., University of California Los Angeles
2006	Steven A. Hillyard, Ph.D., University of California San Diego
2005	Leslie Ungerleider, Ph.D., National Institute of Mental Health
2004	Michael Posner, Ph.D., University of Oregon
2003	Michael Gazzaniga, Ph.D., Dartmouth College
2002	Daniel Kahneman, Ph.D., Princeton University
2001	William Newsome, Ph.D., Stanford University
2000	Patricia Churchland, Ph.D., University of California, San Diego
1999	Giacommo Rizzolatti, Ph.D., University of Parma, Italy
1998	Susan Carey, Ph.D., New York University
1997	Roger Shepard, Ph.D., Stanford University
1996	David Premack, Ph.D., CNRS, France
1995	David H. Hubel, Ph.D., Harvard Medical School

The Fred Kavli Distinguished Career Contributions Award

Congratulations to Marcia K. Johnson for being awarded this honor!

Marcia K. Johnson will accept this prestigious award and deliver her lecture on Monday, March 27, 2017, 1:30 - 2:30 pm, in the Grand Ballroom.

Understanding the Subjective Experience of Remembering

Marcia K. Johnson

Yale University

Memories are attributions that make about mental experiences based on their subjective qualities, our prior knowledge and beliefs, our motives and goals, and the context. Cognitive behavioral studies using both objective and subjective measures provide much information about the encoding, revival and monitoring processes that yield

both true and false memories. Neuroimaging and patient studies further enrich our understanding of the relation between memory and reality. This talk will highlight some key theoretical ideas, empirical findings, and challenging persisting questions about the subjective experience of remembering.

About the Distinguished Career Contributions Award

The Distinguished Career Contributions Award (DCC) was established in 2012 and it has been sponsored by the Fred Kavli Foundation since 2016. This award honors senior cognitive neuroscientists for their sustained and distinguished career, including outstanding scientific contributions, leadership and mentoring in the field of cognitive neuroscience.

An annual call for nominations for the Fred Kavli Distinguished Career Contributions Award will be made to the membership of the society. The recipient of the prize will attend the annual meeting of the Cognitive Neuroscience Society and deliver the Fred Kavli Distinguished Career Contributions lecture.

Previous Winners of the Distinguished Career Contributions Award

2016	James Haxby, University of Trento
2015	Marta Kutas, Ph.D., University of California, San Diego
2014	Marsel Mesulam, M.D., Northwestern University
2013	Robert T. Knight, M.D., University of California, Berkeley
2012	Morris Moscovitch, Ph.D., University of Toronto

Young Investigator Award

Congratulations to the 2017 Young Investigator Award Winners

Leah Somerville, Ph.D., Harvard University Nicholas Turk-Brown, Ph.D., Princeton University

YIA special lectures take place on Monday, March 27, 2017, 4:30 – 5:30 pm, in the Grand Ballroom A at the Hyatt Regency San Francisco.

The purpose of the awards is to recognize outstanding contributions by scientists early in their careers. Two awardees, one male and one female, are named by the Awards Committee, and are honored at the CNS annual meeting. Each award includes \$500 US to be used by the winners toward travel costs to the meeting, or for any other purpose.

Neurodevelopmental mechanisms underlying normative shifts in goal-directed behavior

Monday, March 27, 2017, 4:30 -5:00 pm, Grand Ballroom A

Leah Somerville, Ph.D Harvard University

My lab's research aims to reveal how neurodevelopmentally-mediated shifts circuit-level brain function contribute to changes motivated. emotional, behavior social during adolescence. My talk will feature new work that reveals how the adolescent brain is uniquely "tuned" to particular suites of motivated cues, which impacts adolescents' inhibitory control and social decision

making. Ultimately, the aims of this work are threefold: to bolster fundamental understanding of human neurodevelopment in the second decade of life, to inform relationships between circuit-level brain function and human behavioral outcomes more generally, and to gain insight into mechanisms of health risks that emerge during adolescence.

Statistical learning as a new take on memory systems

Monday, March 27, 2017, 5:00 -5:30 pm, Grand Ballroom A

Nicholas Turk-Brown, Ph.D.

Princeton University

Memory is often divided into distinct types, based whether conscious or not, episodic or semantic, sensory or motor, etc. These useful distinctions have been supported abundant behavioral and neural dissociations. natural consequence has been the intuitive impression of a one-toone mapping between brain systems and memory types. Aside from theoretical

concerns about this, there have also now been several empirical demonstrations of where these boundaries break down. As one example, I will briefly describe a series of neuroimaging, neuropsychological, and computational studies that implicate the hippocampus in statistical learning, a function more traditionally ascribed to cortex. These studies highlight my lab's integrative approach to cognitive neuroscience, embracing the distributed and interactive nature of cognitive processes and their implementation in the brain.

Special Events

Title	Date	Time	Location
What You Need to Know about NIH Funding: Training and Research Grant Opportunities	Monday, March 27	12:15 – 1:15 pm	Bayview
CNS Trainee Professional Development Panel	Monday, March 27	5:30 - 7:00 pm	Bayview
CNS Trainee Association Student Social Night	Monday, March 27	7:00 - 10:00 pm	Monroe Bar

What You Need to Know about NIH Funding: Training and Research Grant Opportunities

Monday, March 27, 12:15 - 1:15 pm, Bayview

NIH Program Directors will present tips and news you need to find your best research fit and be successful in getting a training, career, or research grant at NIH; plus a brief overview of grant application, review, and funding processes. NEW NEED TO KNOW: human subjects research and clinical trials!

Speaker: Kathy Mann Koepke, NICHD/NIH

CNS Trainee Professional Development Panel

Monday, March 27, 5:30 – 7:00 pm, Bayview Room **CNSTA Professional Development Panel Organizers**: Amy Belfi (NYU) and Tony Cunningham (University of Notre Dame)

Speakers: David Poeppel from NYU, Elizabeth Kensinger from Boston College, Kia Nobre from University of Oxford and Sharon L. Thompson-Schill from University of Pennsylvania.

Join the CNS Trainee Association (CNSTA) for the second annual Trainee Professional Development Panel! Hear from some of the foremost experts in the field of cognitive neuroscience as they detail their career trajectories, discuss factors that influenced their development, and reveal what they wish they had known as Trainees. Part of the session time will be reserved for an open Q & A. Appropriate for trainees of all levels!

CNS Trainee Association Student Social Night

Monday, March 27, 7:00 – 10:00 pm, at Monroe located at 473 Broadway, San Francisco, CA 94133

This event is open to all students and post docs of the Cognitive Neuroscience Society.

CNSTA Social Organizers: Sarah Kark (Boston College), Amy Belfi (NYU) and Tony Cunningham (University of Notre Dame)

Come and join us for the annual CNS Trainee Association (CNSTA) Student Social Night, Monday, March 27th, after the CNS Trainee Professional Development Panel. We will meet at 7:00 PM in the conference hotel reception area (look for signs), and walk out to a nearby bar/restaurant around 7:15. There will be no cover charge and one free drink and appetizers will be provided for the first 150 Trainees (cash bar).

More information will be posted on the CNS Trainee Association Facebook page (https://www.facebook.com/CNSTrainees/). We look forward to meeting you!

HOW TO GET THERE:

From the Hyatt:

- Go West on Sacramento St (away from the waterfront)
- Turn Right on Battery St
- Turn Left onto Broadway
- Destination will be on your left at 473 Broadway, San Francisco, CA 94133

Big Ideas in Cognitive Neuroscience

Big Ideas in Cognitive Neuroscience

Saturday, March 25, 2017, 2:00 - 4:00pm, Bayview Room

Co-sponsored by the Cognitive Neuroscience Institute (CNI) and the Max-Planck-Society

Organizers: David Poeppel (Max-Planck-Institute & NYU) and Mike Gazzaniga (UC Santa Barbara)

Chairs: Anna C. Nobre (Oxford University) and Marc Raichle (Washington University St. Louis)

There has been remarkable progress in the last years in the neurosciences, often driven by compelling technical developments in recording techniques, innovative analytic approaches, and new computational frameworks. But what are the big ideas that go along with the big techniques and the big data? In this symposium, we discuss some foundational themes and critical challenges that deal with the neurosciences more broadly, but especially the human neurosciences. Recent discussions in the neurosciences have been relentlessly reductionist. The guiding principle of this symposium is that there is no privileged level of analysis that can yield special explanatory insight into the mind/brain on its own, so ideas and techniques across levels will be necessary. There are many domains of inquiry that merit examination and debate, but to initiate a first CNS discussion, just three themes will be addressed in this symposium: memory, language, and motor control/action. Six speakers, in three pairs, will consider some major challenges and cutting-edge advances, from molecular mechanisms to decoding approaches to network computations. The presentations and debate aim to provide a tentative outline of what might be a productive and ambitious agenda for our fields.

Memory

Speakers: Charles R. Gallistel, *Rutgers University* and Tomás Ryan, *Trinity College Dublin & MIT*

Language

Speakers: Angela Friederici, *Max-Planck-Institute* and Jean-Rémi King, *NYU*.

Action/Motor

Speakers: John Krakauer, *Johns Hopkins University* and Danielle Bassett, *University of Pennsylvania*.

Session #	Date	Time	Location	Chair
Data Blitz Session 1	Saturday, March 25	Noon – 1:30 pm	Bayview	Marian Berryhill
Data Blitz Session 2	Saturday, March 25	Noon – 1:30 pm	Seacliff	Evangelia Chrysikou

Data Blitz Sessions

A Data Blitz is a series of 5-minute talks, each covering just a bite-sized bit of research. It will offer a fast-paced overview of some of the most exciting research presented at this year's poster sessions.

Data Blitz Session 1

Saturday, March 25, Noon - 1:30 pm, Bayview Chair: Marian Berryhill, University of Nevada

Speakers: Yuri Dabaghian, Ryan Giuliano, Anna McCarrey, Alessandro Tavano, Anna Magdalena Barth, Elizabeth L. Johnson, Kevin Jones, Zhang Jingting, Heather D. Lucas, Milena Rabovsky, Anna Khazenzon, Matthew Sazma, Layla Unger, Joe Bathelt, Pedro Pinheiro-Chagas

TALK 1: INTERNAL CONSISTENCY OF SPATIAL INFORMATION IN A COGNITIVE MAP

Yuri Dabaghian¹; ¹Baylor College of Medicine, Houston, TX 77019 USA

TALK 2: CARDIAC MEASURES OF AUTONOMIC AROUSAL ARE ASSOCIATED WITH ERP MEASURES OF SELECTIVE ATTENTION IN CHILDREN AND ADULTS

Ryan Giuliano¹, Christina Karns¹, Theodore Bell¹, Leslie Roos¹, Seth Petersen¹, Elizabeth Skowron¹, Helen Neville¹, Eric Pakulak¹; ¹University of Oregon

TALK 3: INCREASED NEURAL RESPONSE TO WINS OVER LOSSES WITH OLDER ADULTS: EXAMINING THE POSITIVITY BIAS IN AGING

Anna McCarrey^{1,2}, Joshua Goh^{2,3}, Vijay Venkatraman⁴, Claudia Wolf², Gabriela Gomez², Susan Resnick²; ¹Idaho State University, ²National Institute on Aging, ²National Taiwan University College of Medicine, ²University of Melbourne

TALK 4: ATTENTION SHARPENS PREDICTION ERROR, PREDICTION DETERMINES BEHAVIOR

Alessandro Tavano¹, David Poeppel^{1,2}; ¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, ²New York University

TALK 5: RETROACTIVE ATTENTION CAN PROTECT MULTIPLE WORKING MEMORY CONTENTS FROM PERCEPTUAL INTERFERENCE. EVIDENCE BY EVENT-RELATED EEG PARAMETERS IN A RETRO-CUING PARADIGM

Anna Magdalena Barth¹, Edmund Wascher², Daniel Schneider³; ¹Leibniz Research Centre for Working Environment and Human Factors #1, 2, 3

TALK 6: INTERACTING LONG-RANGE NETWORKS GOVERN CONTROL OVER WORKING MEMORY

Elizabeth L. Johnson¹, Callum D. Dewar^{1,2}, Anne-Kristin Solbakk³, Tor Endestad³, Torstein R. Meling³, Robert T. Knight¹; ¹University of California, Berkeley, ²University of Illinois, ²University of Oslo

TALK 7: PREFRONTAL DOPAMINE METABOLISM PREDICTS NEUROSTIMULATION-LINKED WORKING MEMORY TRAINING GAINS

Kevin Jones^{1,2}, Jaclyn Stephens^{1,3}, Marian Berryhill¹; ¹University of Nevada, Reno, ²Georgetown University Medical Center, ²Kennedy Krieger Institute

TALK 8: AGE AND MODULATION OF BOLD RESPONSE TO TASK DIFFICULTY: THE PROTECTIVE EFFECTS OF CRYSTALLIZED KNOWLEDGE

Zhang Jingting¹, Zhuang Song¹, Patricia A. Reuter-Lorenz², Denise C. Park¹; ¹University of Texas at Dallas, ²University of Michigan

TALK 9: THE HIPPOCAMPUS PROMOTES EFFECTIVE SACCADIC INFORMATION GATHERING IN HUMANS

Heather D. Lucas¹, Melissa C. Duff², Neal J. Cohen¹; ¹University of Illinois Urbana-Champaign, ²Vanderbilt University

TALK 10: NEURAL RESPONSES DECREASE WHILE PERFORMANCE INCREASES WITH PRACTICE: A NEURAL NETWORK MODEL

Milena Rabovsky¹, Steven S. Hansen², James L. McClelland²; ¹Freie Universitaet Berlin, Germany, ²Stanford University

TALK 11: IMPACT OF PREPARATORY ATTENTION ON SUBSEQUENT MEMORY: INDIVIDUAL DIFFERENCES IN CORTICAL OSCILLATIONS

Anna Khazenzon¹, Shao Fang Wang¹, Stephanie Zhang¹, Alex Gonzalez¹, Stephanie Gagnon¹, Monica Thieu¹, Melina Uncapher²,

Anthony Wagner¹; ¹Stanford University, ²University of California, San Francisco

TALK 12: STRESS EFFECTS ON MEMORY ARE CONTEXT DEPENDENT

Matthew Sazma¹, Andrew McCullough¹, Andy Yonelinas¹; ¹UC Davis

TALK 13: THE ROLE OF THE PREFRONTAL CORTEX IN INDUCTIVE REASONING: AN FNIRS STUDY

Layla Unger¹, Jaeah Kim¹, Theodore J. Huppert², Julia Badger³, Anna V. Fisher¹; ¹Carnegie Mellon University, ²University of Pittsburgh, ²University of Oxford

TALK 14: THE ROLE OF THE STRUCTURAL CONNECTOME IN LITERACY AND NUMERACY DEVELOPMENT IN CHILDREN

Joe Bathelt¹, Susan Gathercole¹, Sally Butterfield¹, Duncan Astle¹;

¹MRC Cognition & Brain Sciences Unit

TALK 15: ELECTROCORTICOGRAPHY REVEALS THE NEURAL MECHANISMS OF THE ARITHMETIC PROBLEM-SIZE EFFECT

Pedro Pinheiro-Chagas¹, Amy L. Daitch², Josef Parvizi², Stanislas Dehaene¹; ¹Collège de France, Paris, ²Stanford University

Data Blitz Session 2

Saturday, March 25, Noon - 1:30 pm, Seacliff
Chair: Evangelia Chrysikou, University of Kansas
Speakers: Harry Farmer, Suzanne Dikker, Teodora Stoica, Arseny
SOKOLOV, Andrea E. Martin, Manli Zhang, Francesca Carota,
Jona Sassenhagen, Radhika Gosavi, Golijeh Golarai, Surabhi
Bhutani, Andrew Quinn, Marina Bedny, Elisabeth Wenger, Brenda
Rapp

TALK 1: INVESTIGATING THE NEURAL BASIS OF SHARED PREFERENCES AND AFFILIATION

Harry Farmer¹, Antonia Hamilton¹; ¹University College London

TALK 2: TAKING HYPERSCANNING OUT OF THE LAB: EVIDENCE FROM EEG RECORDINGS ON 1400 DYADS DURING FACE-TO-FACE INTERACTION

Suzanne Dikker^{1,2}, Georgios Michalareas³, Matthias Oostrik, Hasibe Melda Kahraman^{4,2}, Imke Kruitwagen¹, Shaista Dhanesar⁵, Marijn Struiksma¹, David Poeppel^{2,3}; ¹Utrecht University, ²New York University, ²Max Planck Institute for Empirical Aesthetics, ²Hunter College, ²Washington University in St. Louis

TALK 3: COMMON NEURAL SUBSTRATES OF DOWN-REGULATING NEGATIVE EMOTION AND SOCIAL THREAT

Teodora Stoica¹, Lindsay Knight¹, Leonard Faul¹, Farah Naaz¹, Brendan Depue; ¹University of Louisville

TALK 4: A MECHANISM FOR THE CORTICAL COMPUTATION OF HIERARCHICAL LINGUISTIC STRUCTURE

Andrea E. Martin^{1,2}, Leonidas A. A. Doumas¹; ¹University of Edinburgh, ²Max Planck Institute for Psycholinguistics

TALK 5: LANGUAGE-MODULATED PERCEPTUAL COMPENSATION: FUNCTIONAL CONNECTIVITY ANALYSIS OF L1 AND L2 READING IMPAIRMENTS IN CHINESE-ENGLISH BILINGUAL CHILDREN

Manli Zhang¹, Xiaoxia Feng², Yue Gao², Xiujie Yang¹, Weiyi Xie¹, Feng Ai¹, Hehui Li², Xingnan Zhao¹, Chi Zhang¹, Li Liu², Guosheng Ding², Xiangzhi Meng¹; ¹Peking University, China, ²Beijing Normal University, China

TALK 6: REPRESENTATIONAL SIMILARITY IN THE BRAIN AND COMPUTATIONAL LANGUAGE PROCESSING: NEW CLUES ABOUT THE NEURAL ENCODING OF WORD MEANING.

Francesca Carota^{1,2,3,4}, Hamed Nili^{2,5}, Nikolaus Kriegeskorte^{2,3}, Friedemann Pulvermüller^{1,2,4}; ¹Humboldt Universit ät zu Berlin, Germany, ²MRC Cognition and Brain Sciences Unit, Cambridge, UK, ²University of Cambridge, Downing Street, Cambridge, CB2 3EB United Kingdom, ²Freie Universität, Berlin, Germany, ²University of Oxford, Oxford, UK

TALK 7: MULTILAYER NEURAL NETWORK MODELING OF SPEECH ENVELOPE PREDICTION ERRORS

Jona Sassenhagen¹, Benjamin Gagl¹, Christian J. Fiebach¹; ¹University of Frankfurt

TALK 8: A COLORFUL ADVANTAGE IN ICONIC MEMORY

Radhika Gosavi¹, Edward Hubbard¹; ¹University of Wisconsin-Madison

TALK 9: FACE AND PLACE SELECTIVITY DEVELOP IN TANDEM WITH THE VISUAL FIELD REPRESENTATIONS ALONG THE VTC IN CHILDREN

Golijeh Golarai¹, Alina Liberman¹, Kalanit Grill-Spector¹; ¹Stanford University

TALK 10: CENTRAL OLFACTORY MECHANISMS UNDERLYING SLEEP-DEPENDENT CHANGES IN FOOD PROCESSING

Surabhi Bhutani¹, Jay A Gottfried¹, Thorsten Kahnt¹; ¹Northwestern University Feinberg School of Medicine

TALK 11: FMRI-GUIDED THETA BURST STIMULATION TO THE SUPERIOR TEMPORAL CORTEX IMPAIRS SENTENCE PROCESSING.

Marina Bedny¹, Judy Kim¹, Gabriela Cantarero^{2,3}, Pablo Celnik²; ¹Johns Hopkins University, ²Johns Hopkins School of Medicine, ²Walter Reed Army Institute of Research

TALK 12: PROBING PLASTICITY OF AUDITORY CORTEX IN ADULTHOOD: STRUCTURAL BRAIN CHANGES FOLLOWING PITCH DISCRIMINATION TRAINING

Elisabeth Wenger¹, André Werner¹, Simone Kühn^{1,2}, Ulman Lindenberger¹; ¹Max Planck Institute for Human Development, Berlin, Germany, ²University Clinic Hamburg-Eppendorf, Hamburg, Germany

TALK 13: TEACHING COGNITIVE NEUROSCIENCE: TRANSFORMATION FROM LARGE LECTURE CLASS TO SMALL ACTIVE LEARNING GROUPS

Brenda Rapp¹, Soojin Park¹, Jeremy Purcell¹, Michael Reese¹; ¹Johns Hopkins University

General Information

Abstracts

Poster abstracts can be found in the printed program and in the PDF version which is downloadable from www.cogneurosociety.org.

ATM

An ATM is located on the Atrium level of the hotel for your convenience.

Audiovisual Equipment for Talks

LCD projectors (e.g., for PowerPoint presentations) will be provided in all rooms where spoken sessions are scheduled; however, computers will NOT be provided. Presenters must bring their own computers and set them up BEFORE the start of the session in which they are presenting. Facilities will be provided to allow several computers to be connected to the LCD projector in a room. Presenters are strongly encouraged to arrive in their scheduled symposium room a minimum of 30 minutes before their talks so that they know how to set up their equipment.

Baggage Check

The Bell Desk - Assistance with luggage, packages and other carryon's, is located with the Concierge, next to the front desk.

Business Center

The Business Center is located on the Bay Level adjacent to the Drum Street windows. The following services are available: Copy Services, Facsimile Services, On-Site Computers, Internet Access, Typing Services, and Shipping Services (UPS and FedEx). After staffed hours, the business center can be accessed with your room key to access computers with internet and printing capabilities

Catering

Catering will be available during the conference and is included in the registration fee. Please refer to the table below for the catering times.

Saturday, March 25

Coffee Break, 1:30 – 2:00 pm, *Bayview & Seacliff Foyer* Welcome Reception, 6:30 – 7:30 pm, *Atrium*

Sunday, March 26

Continental Breakfast, 8:00 – 8:30 am, *Exhibit Hall* Coffee Break, 3:30 – 4:00 pm, *Ballroom Foyer*

Monday, March 27

Continental Breakfast, 8:00 – 8:30 am, *Exhibit Hall* Coffee Break, 3:30 – 4:00 pm, *Exhibit Hall*

Tuesday, March 28

Continental Breakfast, 8:00 - 8:30 am, Exhibit Hall

Certificate of Attendance

To receive a Certificate of Attendance please visit the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel at the end of meeting. If you require any changes, we will be happy to email/mail a copy after the meeting. See also Receipts.

Chair People

Please ensure that you are available in your presentation room at least thirty minutes before the start of the session. Persons chairing sessions are asked to keep the talks on time.

Communications Open House

CNS Public Information Officer Lisa Munoz will answer your questions, give advice, and talk about the communication and press services CNS offers. No appointment needed. Just grab some breakfast and drop in.

Sunday March 26, 8:00 am - 10:00 am, Golden Gate Room Monday March 27, 8:00 am - 10:00 am, Golden Gate Room

Contact Us

To contact us onsite, visit the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel or send an email to meeting@cnsmeeting.org We will respond to your email at our soonest opportunity.

Disclaimer

The Program Committee reserves the right to change the meeting program at any time without notice. Please note this program is correct at time of print.

Drink Ticket

Each Attendee will receive one drink ticket; they can be redeemed for alcoholic or non-alcoholic beverages at the Welcome Reception on Saturday. Lost drink tickets will not be replaced.

Exhibit Hall

The conference exhibit is located in Pacific Concourse Exhibit Hall of the San Francisco Hyatt Regency Hotel. Located in this room are the posters, exhibit booths, and catering. The Exhibit Hall is open to all attendees at the following times:

Saturday, March 25	4:30 pm – 7:00 pm
Sunday, March 26	8:00 am – 12:00 pm 1:30 pm – 7:00 pm
Monday, March 27	8:00 am – 12:00 pm 1:30 pm – 5:30 pm
Tuesday, March 28	8:00 am – 12:00 pm

Facebook

Find us on Facebook search for "Cognitive Neuroscience Society" and like us!

Hotel

The San Francisco Hyatt Regency Hotel is our exclusive Hotel for the CNS 2017 Annual Meeting and where all CNS 2017 meeting events will be held. Hyatt Regency San Francisco, 5 Embarcadero Center, San Francisco CA 94111

Hotel Restaurants

Eclipse Restaurant & Lounge. Whether you are in the mood for quick refreshment or a full meal, the culinary offerings at Eclipse will satiate you with an unforgettable interpretation of global dining.

Internet Access

CNS attendees will receive complimentary wireless internet in their guest room. We are pleased to offer free basic wireless internet in all meeting rooms. Ideal for web browsing, social networking, app usage, and checking emails only. **NOT FOR DOWNLOADING OR STREAMING.** Doing so will cause the system to slow down for everyone. Please be courteous.

Look for SSID: CNS 2017 PASSWORD: Cogneuro

LinkedIn

Join our LinkedIn Group: Cognitive Neuroscience Society (CNS).

Lost & Found

The meeting Lost and Found is located at the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel.

Member Services

The member services desk is located at the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel. The member services desk will be open at the following times:

Saturday, March 25	11:00 am – 5:00 pm

Sunday, March 26	7:30 am – 4:30 pm	
Monday, March 27	8:00 am – 5:00 pm	
Tuesday, March 28	8:00 am – 12:30 pm	

Message Center

Messages for meeting registrants can be left and retrieved at the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel. A bulletin board will be available for announcements and job postings.

Mobile Phones

Attendees are asked to silence their mobile phones when in sessions.

Name Badges

The San Francisco Hyatt Regency Hotel and Convention Center is open to public access. For security purposes, attendees, speakers and exhibitors are asked to wear their name badges to all sessions and social functions.

Entrance into sessions is restricted to registered attendees only. Entrance to the Exhibition will be limited to badge holders only. If you misplace your name badge, please go to the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel for a replacement.

Parking

The San Francisco Hyatt Regency Hotel offers secured and covered Valet parking. Parking rates are currently \$62 + tax per day (\$72.00 inclusive of tax) with in and out privileges for guests and non-guests. (Please note this information was correct at time of print.)

Phone Charging Station

There will be a small phone charging station located at the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel.

Photo Disclaimer

Registration and attendance at, or participation in, the Cognitive Neuroscience Society meetings and other activities constitute an agreement by the registrant/attendee to CNS's use and distribution (both now and in the future) of the registrant's or attendee's image in photographs of such events and activities.

Poster Sessions

Poster sessions are scheduled on Saturday, March 25, Sunday, March 26, Monday, March 27, and Tuesday, March 28. The presenting author must be present during the assigned session and other authors may

be present to answer questions. The poster sessions are in the Pacific Concourse Exhibit Hall of the San Francisco Hyatt Regency Hotel. Badges are required at all times. Do not leave personal items in the poster room.

Printed Program Booklet

One copy of the printed program booklet is available to each attendee who requested one. If you would like a second copy please check in at the Registration Counter on the Ballroom floor of the San Francisco Hyatt Regency Hotel on the last day of the event. Every effort has been made to produce an accurate program. If you are presenting at the conference, please confirm your presentation times as listed in this program. Attendees will also have the option to view the program by downloading it from our website after the meeting has concluded.

Receipts

You received two receipts via email, one at the time of purchase and a second with your registration confirmation. Please email the registration desk if you require an additional copy. See also Certificate of Attendance.

Reception

The Welcome Reception will be held in the Atrium, from 6:30-7:30 pm on Saturday, March 25.

Registration

The Registration Counter is located on the Ballroom floor of the San Francisco Hyatt Regency Hotel. The Registration Counter will be open at the following times:

 Saturday, March 25
 11:00 am - 6:30 pm

 Sunday, March 26
 7:30 am - 6:30 pm

 Monday, March 27
 8:00 am - 5:30 pm

 Tuesday, March 28
 8:00 am - 3:00 pm

Smoking

Smoking is not permitted in or outside any of the meeting rooms or the exhibition hall.

Speakers

All speakers must register and wear name badge to present. Please ensure that you are available in your presentation room at least thirty minutes before the start of the session. See also Audiovisual equipment for Talks.

Student Lounge

CNS will be providing a student lounge in the Seacliff Room with comfortable seating for relaxing and visiting with your colleagues. Meeting internet available in the room, See *Internet Access*.

Transportation

Taxis - There is a taxi stand at the front of the Hotel. A Taxi to or from SFO is about 20-30 minutes and is approximately \$50-55.

BART (Bay Area Rapid Transit) -Please visit www.bart.gov for fares and schedules. Station is located within steps of the hotel's front entrance. Approximate one-way fare from San Francisco International Airport \$8.65 each way.

Lorrie's Shuttle - Offers service to the Hyatt Regency San Francisco. Shuttles depart every 20 minutes. Board shuttles just outside of the luggage carousels on the lower level of SFO. Fare is \$17 from the airport to the hotel.

*Fares subject to change without notice.

Twitter

Follow CNS Annual Meeting (@CNSmtg). Our Hashtag this year is #CNS2017

Website

http://www.cogneurosociety.org

SAVE THE DATE

CNS 2018
Annual Meeting
Will be held in
Boston, MA on
March 24-27, 2018

Exhibits

Exhibitors

Visit our exhibitors in Pacific Concourse

ANT—North America **BIOPAC Systems, Inc. Brain Products GmbH Brain Vision. LLC Cambridge University Press Cedrus Corporation Compumedics-Neuroscan** Cortech Solutions, Inc. **Electrical Geodesics, Inc.** gTec Medical Engineering GmbH **MIT Press** Neurobehavioral Systems, Inc. NIRx Medical Technologies, LLC **Psychology Software Tools** Rogue Research, Inc. Routledge, Taylor & Francis Soterix Medical SR Research Ltd TCG/NITRC Wearable Sensing, LLC

Exhibit Hours

The conference exhibits are located in Pacific Concourse of the Hyatt Regency San Francisco Hotel. Located in this room are the posters, exhibit booths, and catering. The Exhibit Hall is open to all attendees at the following times:

Saturday, March 25 4:30 pm – 7:00 pm Sunday, March 26 8:00 am – 12:00 pm 1:30 pm – 7:00 pm Monday, March 27 8:00 am – 12:00 pm 1:30 pm – 5:30 pm

Tuesday, March 28 8:00 pm - 12:00 pm

GSA/PFA Awards

Congratulations to the 2017 winners of the Graduate Student Awards and the Post-Doctoral Fellow Awards.

Graduate Student Award Winners

Jason Samaha, University of Wisconsin-Madison
Pablo Morales, University of Oregon
Erik Jahner, University of California Riverside
Xingyu Ding, New York University
Jie Zheng, University of California, Irvine
Thomas Donoghue, University of California, San Diego
Erika Künstler, Jena University Hospital
Brittany Lee, San Diego State University
Maria Mikail, CAMH
Elena Molokotos, Suffolk University

Post-Doctoral Fellow Award Winners

Kamin Kim, University of Texas Health Science Center at Houston
Kamalini Ranasinghe, University of California, San Francisco Steven Weisberg, University of Pennsylvania
Karuna Subramaniam, University of California, San Francisco Anne Martin, Princeton University
Arjen Stolk, University of California, Berkeley
Franziska Hartung, University of Pennsylvania
Eelke Spaak, University of Oxford
Yuan Tao, Johns Hopkins University
Sufang Li, NIDA

^{*}Exhibit Halls are closed Sunday and Monday, 12:00 pm – 1:30 pm.

Invited-Symposium Sessions

#	Title	Date	Time	Location
1	Frontal cortex contributions to decision making	Sunday, March 26	10:00 am - Noon	Ballroom A
2	Cortical oscillations in hearing, speech, and language	Sunday, March 26	10:00 am - Noon	Ballroom B/C
3	The lapsing brain: how attentional fluctuations impact cognition	Tuesday, March 28	1:30 - 3:30 pm	Ballroom A
4	Brain Network Specialization Through Adolescence Supporting Stabilization of Cognitive and Affective Brain Systems	Tuesday, March 28	1:30 - 3:30 pm	Ballroom B/C

Invited Symposium Session 1 FRONTAL CORTEX CONTRIBUTIONS TO DECISION MAKING

Sunday, March 26, 10:00 am - Noon, Ballroom A

Chair: Elisabeth A (Betsy) Murray, National Institute of Mental

Speakers: Betsy Murray, Erin Rich, Paul Cisek, Joseph Kable

There is broad interest in the neural mechanisms underlying rewardbased decision making. The four speakers will provide an update on different aspects of decision making in macaques and humans. Murray and Rich will unravel the neural substrates and neural mechanisms underlying object choices in macaque monkeys. Murray will discuss the causal contributions of different frontal cortex areas to object choices, focusing on the complementary roles for orbital and ventral prefrontal regions. Rich will discuss a novel approach to decode value representations from orbitofrontal cortex during individual choices with high temporal resolution. Cisek will present the novel hypothesis that decisions about actions unfold as a biased competition, and then will test that idea using neurophysiological approaches in macaques. Based on findings from both functional imaging and effects of brain damage, Kable will discuss the separable contributions of ventromedial prefrontal cortex and anterior cingulate cortex to decision making in humans.

TALK 1: FROM KNOWLEDGE TO ACTION: THE ROLE OF THE PRIMATE ORBITOFRONTAL CORTEX

Betsy Murray¹; ¹National Institute of Mental Health

The orbitofrontal cortex (OFC), traditionally defined as Walker's areas 11, 13 and 14, has long been thought to play a critical role in behavioral flexibility, including behavioral inhibition and the regulation of emotion. Recent evidence has overturned these ideas by showing that inadvertent damage to fiber pathways account for the reported deficits. The use of a more selective lesion method in macaque monkeys has shown that OFC has a more specific and different function: representing and updating the value of specific expected outcomes, based on current biological states. These updated valuations, in turn, guide choice behavior. Recent studies have identified functional subdivisions within OFC and helped to differentiate it from nearby

areas. In one study we found that the posterior part of OFC, area 13, is necessary for its value updating function, while the anterior part, area 11, translates this knowledge into adaptive actions. In a second study we contrasted the contributions of OFC and the neighboring ventrolateral prefrontal cortex (VLPFC; Walker's area 12) to value updating. We found that OFC and VLPFC play complementary roles in value updating and—by extension—decision making. The former depends on dynamic internal states; the latter depends on dynamic external contingencies. Given that granular OFC and VLPFC emerged during the evolution of primates, a comparative analysis suggests that these capacities built on OFC functions inherited from early mammals.

TALK 2: DYNAMIC ENCODING OF CHOICE IN THE ORBITOFRONTAL CORTEX

Erin Rich^{1,2}; ¹University of California Berkeley, ²University of California San Francisco

When making a subjective decision, it is believed that the brain computes a value for each option and compares these values to arrive at a choice. Evidence suggests that the orbitofrontal cortex (OFC) is critically involved in this process, however the neural mechanisms involved remain largely obscure. One reason is that preferences are frequently driven by knowledge and states internal to the organism, and far removed from externally observable sensory inputs or motor outputs. Furthermore, subjective decisions are not stereotyped. They may evolve differently even if the same decision is made multiple times, so that averaging neural responses over repeated trials can obscure critical detail. With this in mind, we used a novel approach to decode value representations from OFC during individual choices with high temporal resolution. Ensembles of OFC neurons and field potentials were recorded while non-human primate subjects chose between images that predicted rewards of different value. We used a classification algorithm to decode patterns of activity associated with each image, and found that OFC alternated between states representing the value of two choice options. The decoded patterns varied trial-by-trial, but the strength and frequency of the recovered states predicted whether a subject would decide quickly or vacillate between the two alternatives. Multiple neural features contributed to these representations, and individual neurons were found to shift their firing rates as the network evaluated each option. Overall, dynamic

representations of value in OFC are likely a fundamental feature of large-scale brain networks that underlie value-based decision-making.

TALK 3: NEURAL MECHANISMS OF REAL-TIME EMBODIED DECISIONS

Paul Cisek1; 1University of Montreal

Psychological and neurophysiological studies of decision-making have focused primarily on scenarios in which subjects are faced with discrete options that are stable in time, permitting a serial process of representing the relevant information, careful deliberation about the choice, followed by action planning and execution. However, the brain evolved to guide interactions with a dynamic and constantly changing world, in which the choices themselves as well as their relative costs and benefits are defined by the momentary geometry of the immediate environment and are continuously changing during ongoing activity. Such "embodied decisions" still dominate our lives, whether we're playing a sport or walking through a crowd, and they pose challenges that are very different than the demands of economic choice. To deal with these challenges, animals require a neural architecture in which the sensorimotor specification of potential actions, their valuation, selection, and even execution can all take place in parallel. I will describe a general hypothesis for how the brain deals with the challenges of such dynamic and embodied behavior, and present a series of neurophysiological recording experiments in rhesus monkeys aimed at testing the predictions of this hypothesis. These experiments suggest that decisions about actions unfold as a biased competition taking place within a map of potential actions and that the resolution of this competition, in the sensorimotor system, is what determines the volitional commitment to an action choice.

TALK 4: VENTROMEDIAL PREFRONTAL CORTEX PLAYS A SIMILAR ROLE IN TEMPORALLY-EXTENDED FORAGING-STYLE DECISIONS AND BINARY CHOICES

Joseph Kable¹; ¹University of Pennsylvania

Many decisions involve choosing whether to continue pursuing a current goal or abandon this course of action in favor of an alternative one. Foraging is a classic example of such sequential, temporally-extended decision making. There has been much debate about whether the neural mechanisms of temporally-extended decisions, such as foraging, are fundamentally similar to those of choices from a fixed menu of options. To address this question, we performed a series of studies using a willingness-to-wait paradigm, in which people continually reassess whether they want to keep waiting for a temporally uncertain delayed reward. We find that waiting behavior in this task is well described by formal models of optimal foraging. Using fMRI, we find that neural activity in the ventromedial prefrontal cortex tracks the value of the awaited reward as it dynamically changes through time, akin to the static value signal previously observed in this region during discrete choices from a fixed menu. Damage to the

ventromedial prefrontal cortex in humans also impairs the calibration of waiting, in the same way that damage to this region impairs the consistency of binary choices. In contrast to the results in ventromedial prefrontal cortex, we find that anterior cingulate cortex and anterior insula exhibit increased activity right before decisions to abandon the current option, and interpretation of this as a signal to shift strategy is bolstered by the finding that lesions here enhance waiting. These results argue for a continuity in the role of frontal cortex across different forms of decision-making.

Q&A PERIOD

The speakers will take questions from the audience.

Invited Symposium Session 2 CORTICAL OSCILLATIONS IN HEARING, SPEECH, AND LANGUAGE

Sunday, March 26, 10:00 am - Noon, Ballroom B/C
Chair: David Poeppel, Max-Planck-Institute, NYU
Speakers: Saskia Haegens, Virginie van Wassenhove, Nai Ding,
David Poeppel

Neural activity of an oscillatory nature is observed in a range of studies investigating perception and cognition. There is legitimate debate about the role of oscillations, but on balance there is emerging consensus that cortical oscillations play a critical role in shaping the temporal structure of perceptual experience. One area of research in which new theories and approaches are being explored concerns their potential causal role for hearing speech, and language processing. From selecting information in auditory streams to recognizing the elements of speech to constructing abstract linguistic representations, oscillations across timescales (from low-frequency delta to activity in the high-gamma band) have been implicated in functionally specific ways. The symposium addresses major new phenomena and their potential explanations by drawing on psychophysics neurophysiology (MEG, ECoG, EEG). Linking hypotheses are developed between basic computational properties underlying hearing, speech, and language and how rhythmic brain activity might form the implementational basis underlying these operations.

TALK 1: OSCILLATORY DYNAMICS OF AUDITORY ATTENTION Saskia Haegens¹; ¹Columbia University

In daily life our brains receive a continuous stream of sensory input. Effective processing in a complex natural environment requires attention: selection of relevant input and suppression of irrelevant information. Here I will talk about the oscillatory dynamics thought to be instrumental in directing attention, specifically, (1) the alpha rhythm, and (2) neuronal entrainment to slow frequency rhythms. The alpha rhythm has been proposed as a mechanism of functional inhibition. In a series of spatial attention studies we showed that decreased alpha facilitates processing whereas increased alpha functions to suppress

Invited Symposium 2017 Annual Meeting

distracting input. I will here discuss the evidence for this mechanism in the auditory system. In addition, I will present a series of psychophysics experiments on auditory temporal attention, showing rhythmic entrainment as a mechanism of focusing attention on relevant input. Subjects performed an auditory discrimination task, in which they received a temporal visual cue, which was either informative (rhythmic condition) or not informative about the specific timing of the target (random condition). We showed that when a target is presented in-phase with the cued rhythm, performance improves as compared to both the random-mode (no precise temporal information) and the out-of-phase (unexpected) condition. In an accompanying MEG study we looked into the neural correlate of this effect, and found increased delta coherence, in the rhythmic condition, which was sustained after the cue, confirming the entrainment prediction.

TALK 2: TIMING SPEECH CONTENT

Virginie van Wassenhove1; 1CEA/NeuroSpin, France

Neuronal oscillations have been implicated in various cognitive functions including time and speech processing. Non-stationarities in the phase and in the power of entrained brain responses are not only critical to index the endogenous control of information processing but also to capture an individual's subjective perception of time or speech content. For instance, using a temporal recalibration paradigm in which participants adapted to audiovisual asynchronies while being recorded with magnetoencephalography (MEG) revealed that changes in the phase of the auditory entrained responses could predict an individual's conscious event timing. In the speech domain, neuronal oscillations have been hypothesized to segment the acoustic stream into computational units (e.g. syllables or words). To test whether parsing was driven by bottom-up acoustic cues or modulated by top-down representational availability, participants listened to speech streams that would yield two possible percepts. Two markers of neural-speech tracking were found under endogenous control: small modulations in low-frequency oscillations and variable latencies of high-frequency neural activity (sp. beta and gamma bands). While changes in lowfrequency neural oscillations were compatible with the encoding of pre-lexical segmentation cues, high-frequency activity informed on an individual's conscious speech percept. Altogether, these results are consistent with the notion of neural oscillations as cortical framing of information processing in time.

TALK 3: CORTICAL TRACKING OF HIERARCHICAL LINGUISTIC STRUCTURES IN CONNECTED SPEECH

Nai Ding1; 1Zhejiang University, China

Language is hierarchically organized into syllables, words, phrases, and sentences. For spoken language, online building of these hierarchical linguistic structures is a fundamental yet challenging task. Although the boundaries between syllables generally have clear acoustic signatures, determining the boundaries between words and

phrases critically relies on the listener's linguistic knowledge. During speech listening, it has been well characterized that auditory cortical activity is entrained to the syllabic rhythm of speech. However, how larger linguistic structures, such as words and phrases, are represented in the brain remains elusive and is investigated in this study. We designed speech materials in which the hierarchical linguistic structure of speech is dissociated from low level acoustic features. and measured cortical activity magnetoencephalography (MEG) from listeners listening to such materials. It is demonstrated that cortical activity is concurrently entrained to the rhythms of syllables, phrases, and sentences, unconfounded by the tracking of acoustic properties of speech. Furthermore, entrainment to larger linguistic structures such as phrases and sentences is demonstrated to be associated with the syntactic structure of speech rather than the predictability of each incoming word. In summary, cortical circuits can generate slow rhythms matching the time scales of larger linguistic structures, even when such rhythms are not present in the speech input, which provides a plausible mechanism for online building of large linguistic structures.

TALK 4: CORTICAL RHYTHMS IN HEARING, SPEECH, AND LANGUAGE: A TAXONOMY

David Poeppel^{1,2}; ¹Max-Planck-Institute, ²NYU

Oscillations have been observed in a wide range of phenomena in cognition, in general, and language processing, in particular. The rumors about oscillations range from 'they are causally crucial' to 'they are at most the exhaust fumes of cortical computation.' Can the wilderness of oscillation-based phenomena be tamed? On the view that brain rhythms are not merely epiphenomenal but play some role, an attempt at a taxonomic model is made. I argue that oscillations across rates can be argued to sample, predict, and attend to the world. Most broadly speaking, the pairing of theta and gamma underlies sampling, the pairing of delta and beta underlies predicting, and alpha splits the low and high rhythm regimes and underlies attending and inhibiting the inputs that confront our perceptual and cognitive systems.

Q&A PERIOD

The speakers will take questions from the audience.

Invited Symposium Session 3 THE LAPSING BRAIN: HOW ATTENTIONAL FLUCTUATIONS IMPACT COGNITION

Tuesday, March 28, 1:30 - 3:30 pm, Ballroom A Chair: Edward Vogel, University of Chicago

Speakers: Kirsten C. S. Adam, Mariam Aly, Michael Esterman,

Kalina Christoff

Attention is well known to play a pivotal role in controlling the operation of many cognitive mechanisms such as perception, memory,

reasoning and problem solving. However, recent advances in behavioral and neuroscientific methods have revealed that an individual's attentional state is not stable, but instead fluctuates substantially over time. During any given task setting, an individual's attentional state can range from being completely task-focused (e.g., in the zone) to completely disengaged (e.g., mind-wandering). This symposium will showcase recent work revealing how fluctuations in the brain's ongoing attentional state impact cognitive functioning and task performance. Edward Vogel will describe how fluctuations of attentional control may determine individual differences in working memory capacity. Mariam Aly will discuss her work examining how variance in attentional state determines the quality of episodic memory representations that are encoded in the hippocampus. Michael Esterman will talk about his work characterizing the brain networks related to attentional fluctuations and how they connect to changes in ongoing task performance. Finally, Kalina Christoff will discuss her work on the neural bases of mind-wandering in which she argues that mind-wandering plays a critical role in allowing for spontaneous thought.

TALK 1: ATTENTIONAL LAPSES DRIVE INDIVIDUAL DIFFERENCES IN WORKING MEMORY CAPACITY

Kirsten C. S. Adam¹, Edward K. Vogel¹; ¹University of Chicago

Working memory (WM) is restricted and varies considerably across individuals. These individual differences in WM are strongly predictive of many high level functions such as reasoning and intelligence. In previous work, we and others have found that low capacity individuals are poorer at exerting attentional control than high capacity individuals. However, the aggregate nature of most attention and memory measures leaves a basic question untested. Do low capacity individuals have a consistently reduced attentional capacity or is their poorer performance a mixture of "normal" capacity trials with trials in which they were completely disengaged from the task? Using both behavioral and EEG approaches we examined trial by trial fluctuations in WM success. While we found that low capacity individuals had roughly double the frequency of complete attentional lapses, this factor alone was insufficient to account for the extent of the differences between subjects. Instead, our results suggest that these individual differences are primarily driven by periodic fluctuations in the successful implementation of attentional control over working memory storage. We argue that these fluctuations in attentional control may reveal a common thread linking WM to performance on other cognitive and scholastic aptitude measures.

TALK 2: HIPPOCAMPAL REPRESENTATIONS OF ATTENTIONAL STATE PREDICT THE FORMATION OF EPISODIC MEMORY

Mariam Aly¹, Nicholas B. Turk-Browne¹; ¹Princeton University

Attention modulates what we see and what we remember. Despite this connection in behavior, little is known about the mechanisms that link

attention to memory formation in the brain. Using high-resolution fMRI, we investigated the hypothesis that attentional states are represented in the hippocampus, and that the quality of these representations during encoding influences whether attended information is later remembered. In Phase 1 of the experiment, participants performed an attention task in which, on every trial, they viewed an image of a room with a painting and then searched through a stream of images for a painting from the same artist (art state) or a room with the same layout (room state). All trials of each attentional state were used to identify an average pattern of activity within each hippocampal subfield that corresponded to the representation of that state. Phase 2 used an incidental encoding design with trial-unique images (rooms with art); participants attended to the art or to the rooms in different blocks. Memory for the attended aspect of each image (art or room) was tested in Phase 3. We predicted that participants would be more likely to remember attended information if, during encoding, their hippocampus was more strongly in an attentional state that prioritized that information. Indeed, trial-by-trial encoding activity patterns in hippocampal subfields CA2/3/DG were more highly correlated with the task-relevant attentional state representation when items were subsequently remembered vs. forgotten. These results offer insight into the mechanisms by which attention transforms percepts into memories.

TALK 3: CLARIFYING THE ROLES OF TASK-POSITIVE AND TASK-NEGATIVE NETWORKS IN ATTENTIONAL FLUCTUATIONS

Michael Esterman^{1,2}, Aaron Kucyi³, Victoria Poole^{1,4,5}, Joseph DeGutis^{1,5}, Eve Valera^{6,7}; ¹Veterans Administration, Boston MA, ²Boston University School of Medicine, ³Stanford University, ⁴Institute for Aging Research, Hebrew SeniorLife, ⁵Harvard Medical School, ⁶Harvard Medical School, Psychiatry, ⁷Massachusetts General Hospital

Sustaining attention is challenging and in reality our attention fluctuates. Though these fluctuations have been linked to spontaneous activity in the brain's default mode network (DMN) as well as taskpositive attention networks (TPNs), several inconsistencies exist regarding the nature of these relationships. In the DMN, activity has been associated with self-reported mind-wandering, and such mindwandering is often associated with error-prone, variable behavior. However, increased DMN activity has also been reliably associated with stable, rather than variable behavior (i.e., being 'in the zone'). To address this seeming contradiction, subjects performed a sustained attention task during fMRI, simultaneously measuring self-reported mind-wandering, task variability, and brain activity. We found that even though mind-wandering co-occurred with increased task variability, highest DMN signal levels were observed during mind-wandering and stable behavior simultaneously. In a second experiment, we addressed a parallel contradiction in TPNs, namely that TPN activity is associated with motivated attention, which is typically itself

associated with accurate, stable behavior. However, increased TPN activity has also been reliably associated with variable, rather than stable behavior (i.e., being 'out of the zone'). Using a similar continuous performance task and performance-based rewards, we find that while motivation co-occurred with decreased variability, highest TPN activity was observed with motivation and variable behavior simultaneously. Our results challenge commonly accepted viewpoints that spontaneous DMN/TPN activity primarily reflects mindwandering and motivated attention, respectively, by showing that it also reflects attentional state fluctuations that cannot be captured by self-report or extrinsic experimental manipulations.

TALK 4: MIND WANDERING AS SPONTANEOUS THOUGHT: A DYNAMIC FRAMEWORK

Kalina Christoff¹; ¹University of British Columbia

Mind-wandering has recently come to occupy a central position in cognitive psychology and neuroscience. Most theories and research so far have examined it in terms task-unrelated or stimulusindependent mental contents that occur at particular moments of time. A defining feature of mind-wandering, however, are its dynamics: how thought moves over time. In this talk, I will introduce a dynamic framework for understanding mind-wandering and its neural basis. I propose that mind-wandering is best understood as a member of a larger family of spontaneous thought processes – a family that also includes creative thought and dreaming. I will distinguish between two types of constraints on thought – deliberate and automatic – that can reduce thought's spontaneous movement. Within this framework, fluctuations between spontaneous, automatic, and deliberate modes of thinking correspond to changing interactions among large-scale brain networks. Finally, the framework situates spontaneous thought within a broader conceptual space that allows its comparison to goaldirected thought, as well as to clinical disorders that make thought excessively constrained - such as in rumination and anxiety, or excessively variable - such as in ADHD.

Q&A PERIOD

The speakers will take questions from the audience.

Invited Symposium Session 4

BRAIN NETWORK SPECIALIZATION THROUGH ADOLESCENCE SUPPORTING STABILIZATION OF COGNITIVE AND AFFECTIVE BRAIN SYSTEMS

Tuesday, March 28, 1:30 - 3:30 pm, Ballroom B/C Chair: Beatriz Luna, University of Pittsburgh

Speakers: Beatriz Luna, Damien Fair, Jason Chein and Juliet Y.

Davidow

Adolescence is increasingly being recognized as a unique and significant stage of development supporting the establishment of

cognitive control and its integration with emotional and social processing systems. Emerging evidence indicates that this transition is underlied by unique processes of network specialization specific to supporting the transition to established adult modes of brain organization. This symposium will discuss work characterizing changes in functional brain organization during the pubertal period that support specialization of cognitive and affective processes. Bea Luna will present fMRI and MEG data on developmental changes in the instantiation of cognitive brain states and cognitive network stability. Her results will show stabilization of task related systems with increased complexity in resting state connectivity. Damien Fair will present data examining the influence of emotional context on intrinsic brain connectivity across the adolescent, young adult, and adult periods. He will show how a specific phenotype (i.e. brain patterns that revert to a "younger" age in emotional contexts) relates to risk perception and risk preference. Jason Chein will follow describing research exploring how the structural and functional maturation of brain networks engaged in social information processing, reward valuation, and cognitive control impact adolescent decision making and reward learning, and affect adolescents' relative susceptibility to the context in which decision and reward processing occurs. Finally, Juliet Davidow will present studies on the consequences of heightened adolescent reward reactivity on motivated learning and episodic memory as striatal and hippocampal systems are differentially engaged affecting cognitive control.

TALK 1: CHANGES IN THE INTEGRATION OF BRAIN PROCESSES SUPPORTING THE TRANSITION FROM ADOLESCENT TO ADULT LEVEL COGNITIVE CONTROL

Beatriz Luna¹; ¹University of Pittsburgh Medical Center

Cognitive processes and their underlying brain systems are on line early in development showing incremental integration into adolescence. Subsequently, from adolescence to adulthood there is a period of refinement leading to adult levels of stabilization in the engagement of mature cognitive processes supporting improvements in the rate and precision of executive responses. I will present fMRI and MEG data on developmental changes in the instantiation of cognitive brain states and cognitive network stability during cognitive control and during rest. Results indicate that during working memory (WM) performance there are increasingly more distinct brain patterns of activity available with development. The engagement of relevant cognitive brain tasks however show developmental decreases in the variability of the magnitude of their engagement that are associated with decreases in performance variability. In addition, we find developmental enhancements in the temporal organization and engagement of frontal network contributions during cognitive control. In contrast, during rest, results indicate developmental decoupling of regions in cognitive brain networks particularly at low frequency oscillations. Together these results suggest that through adolescence

there is evidence for refinement of cognitive brain systems supporting increasing complexity of brain integration supporting stability and flexibility of cognitive brain systems.

TALK 2: AT RISK OF BEING RISKY: THE RELATIONSHIP BETWEEN "BRAIN AGE" UNDER EMOTIONAL STATES AND RISK PREFERENCE

Damien Fair¹; ¹Oregon Health & Science University School of Medicine

Abstract: Developmental differences regarding decision-making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. In this work we will discuss the influence of emotional context on underlying functional brain connectivity across age and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception – a pattern exemplified greatest in young-adults (ages 18-21). These results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky."

TALK 3: DECISION, REWARD, AND SOCIAL PROCESSING IN ADOLESCENT BRAIN DEVELOPMENT

Jason Chein¹; ¹Temple University

Maturational changes in brain networks that support decision, reward, and social processing yield a developmental period, adolescence, during which the ability to self-regulate behavior nears fully mature levels but sensitivity to specific contextual factors is heightened. One salient influence on adolescent behavior is social context, with adolescents exhibiting especially increased sensitivity to the social conditions under which their decisions and behavior are carried out. While increased sensitivity to social context during adolescence can have potentially deleterious manifestations (e.g., increased risk taking), it can also have adaptive benefits (e.g., enhanced reward learning). Through studies combining structural and functional neuroimaging with laboratory assessments of risk-taking, cognitive control, and reward sensitivity/learning, we have explored the specific ways in which brain development enhances sensitivity to social inputs during adolescence. In this work, we find that sensitivity to social information is linked to network-level changes in the structural morphology of the "social brain", that social context has its strongest impact on the outputs of reward-related processing centers (e.g., striatal and orbitofrontal regions), and that social context modulates the dynamics of brain network interactions during decision processing, with the anterior insula playing an especially important role in driving

these dynamics. Our findings highlight the direct links between social context and reward-related processes, but early evidence also suggests that when conditions deplete the availability of cognitive control resources they can exacerbate the impacts of social context, while conditions that enhance the recruitment of control resources can minimize social impacts on adolescent behavior.

TALK 4: MULTIPLE LEARNING SYSTEMS IN THE ADOLESCENT BRAIN: THE INFLUENCE OF MOTIVATED LEARNING ON EPISODIC MEMORY AND COGNITIVE CONTROL.

Juliet Y. Davidow1; 1Harvard University

Adolescents are known for being distinctly sensitive to motivational cues, a characteristic that has been linked to heightened activity in the brain's reward systems. Rewards are critical for adaptively guiding behavior but can differentially bias neural systems in ways that are either beneficial or interruptive for other cognitive processes. In one study, we show a beneficial role of motivational sensitivity. In a probabilistic reinforcement learning task, adolescents showed better motivated learning and a stronger link between learning and episodic memory. This enhancement in learning was related to heightened prediction error-related BOLD activity in the hippocampus and to stronger functional connectivity between the hippocampus and the striatum at the time of reinforcement. In another study, we show impairment from motivational sensitivity. In a two-part task, a reward association is conditioned to a neutral stimulus, then later used in a classic cognitive control task. Adolescents showed greater impairment for the cue with an associated reward history. This intrusion of the previous reward association over the ability to inhibit a response was related to activity in the striatum and the anterior cingulate cortex. Together, this work highlights the potential to leverage the sensitivity of adolescent motivational systems in ways that are advantageous, but cautions that there are goal-directed behaviors that are susceptible to intrusion from this bias.

Q&A PERIOD

The speakers will take questions from the audience.

Symposium Sessions

#	Title	Date	Time	Location
1	Are we ready for real-world neuroscience research?	Sunday, March 26	1:30 - 3:30 pm	Ballroom A
2	Genetics and cognitive neuroscience: What does the future hold?	Sunday, March 26	1:30 - 3:30 pm	Bayview
3	Multivariate approaches for neural dynamics: It's about time	Sunday, March 26	1:30 - 3:30 pm	Ballroom B/C
4	Working memory: sustained activity or dynamics?	Monday, March 27	10:00 am - Noon	Ballroom A
5	Cognitive maps in the orbitofrontal cortex for goal-directed behavior	Monday, March 27	10:00 am - Noon	Bayview
6	Top-Down Functions of Neural Oscillations for Speech and Language Processing	Monday, March 27	10:00 am - Noon	Ballroom B/C
7	Driving the brain to understand cognition	Tuesday, March 28	10:00 am - Noon	Bayview
8	Deciding how to decide: understanding when and why the brain allocates computational resources to goal-directed behavior	Tuesday, March 28	10:00 am - Noon	Ballroom A
9	Memory Neuromodulation: How do different states of learning influence episodic memory?	Tuesday, March 28	10:00 am - Noon	Ballroom B/C

Symposium Session 1

ARE WE READY FOR REAL-WORLD NEUROSCIENCE RESEARCH?

Sunday, March 26, 1:30 - 3:30 pm, Ballroom A

Chair: Pawel J. Matusz, University Hospital Centre (CHUV) -

University of Lausanne, Switzerland

Speakers: Alex Huth, Suzanne Dikker, Catherine Perrodin, Pawel

J. Matusz

Real-world environments are typically dynamic, complex, multisensory in nature, and necessitate the support of top-down mechanisms for us to be able to "see". Fundamental principles of perception and brain organisation have been established by research utilising wellcontrolled, but simplified, paradigms with basic stimuli. Drawing on theoretical advances and those in computational power, brain mapping, and signal-processing techniques, research has been increasingly departing from traditional paradigms to understand the brain-cognitive mechanisms governing perception in environments containing one, or, more recently, multiple real-world environmental attributes. Have we reached a point where we can confidently abandon laboratory-based experiments? What are the exceptional insights provided by research conducted in naturalistic environments? Fundamental assumptions about perception or brain hierarchy have been questioned - by studies adapting traditional paradigms to vary task-relevance and (multi)sensory nature of stimulation. Have contributions of these laboratory-based approaches effectively rendered them obsolete? Alex Huth will discuss how studies using audio-stories and movies advance our understanding of brain representations of semantic knowledge. Suzanne Dikker will present the novel insights provided by studying brain-to- brain synchrony during classroom-based learning. Catherine Perrodin will illustrate how human object recognition is better understood via necessarily labbased research on communication signals in non-human primates. Lastly, Pawel Matusz will highlight how the classical visual-attention paradigms can be adapted to vary also the (multi)sensory nature of stimulation and selective-attention skills of observers, in order to achieve a unique understanding of the brain and cognitive mechanisms of naturalistic object perception in real-world scenarios.

TALK 1: USING VOXEL-WISE MODELING OF FMRI RESPONSES TO NATURAL STORIES AND MOVIES TO STUDY SEMANTIC REPRESENTATIONS IN HUMAN CORTEX

Alex Huth1; 1University of California, Berkeley

For decades neuroimaging has been used to investigate the organization of the human brain. Even so, little is known about how exactly the brain supports naturalistic perception. One issue is the point hypothesis testing approach that has dominated neuroimaging. This approach can have high statistical power for testing specific hypotheses, but cannot accurately estimate effect sizes, leaving open whether many "significant" findings are meaningful. Furthermore, it is difficult to synthesize results from this approach into a coherent view of cortical organization. We offer an alternative: voxelwise modeling (VM) using natural stimuli. Here, subjects are presented with complex natural stimuli while brain responses are recorded. Hypotheses about how these stimuli are represented are instantiated as feature spaces that are extracted from the stimuli. Then encoding models, which predict responses based on linear combinations of features, are estimated separately for each voxel. Critically, these models are validated by predicting responses in held-out datasets that were not used for model estimation. This makes it possible to directly estimate the effect size of each model. Models are then examined to assess what types of information are represented in each voxel. We show that

this exploratory approach can construct complex and comprehensive maps of cortical representations in two modalities: vision and language. Already these results replicate findings from previous hypothesis-driven studies (e.g. faces vs. objects, abstract vs. concrete words) and also put these findings in context. This work demonstrates how important naturalistic stimuli and data-driven approaches, like voxelwise modelling, are for understanding real-world perception.

TALK 2: LEARNING AND CONNECTING IN THE REAL WORLD: CONDUCTING NEUROSCIENCE RESEARCH IN HIGH SCHOOL CLASSROOMS AND MUSEUMS

Suzanne Dikker^{1,2}; ¹New York University, ²Utrecht University, the Netherlands

Laboratory research has produced tremendous insight into how the human brain supports learning and retention. Still, laboratorygenerated findings do not always straightforwardly generalize to realworld learning environments, such as schools. In an effort to bridge the neuroscience laboratory and naturalistic learning settings, we collaborated with New York City high schools to collect EEG data from students as they engaged in natural classroom interactions. In one school, brain-to-brain coherence analyses (Total Interdependence; Wen et al., Neuroimage 2012) showed that the EEG signal was more synchronized among students if they liked each other better, if they were more socially aware, and when they enjoyed a class activity better. For example, student engagement and brain-to-brain synchrony were both higher while students watched videos on the class topic than when the teacher lectured. In a second school, students showed higher retention scores for class content presented in videos than for content delivered during lectures. These findings provide evidence pertaining to the neural basis of classroom social dynamics and student engagement, two factors that have been found critical for student learning (Reyes et al. J. Educ. Psychol. 2012). The role of engagement in brain-to-brain synchrony is further supported by EEG data collected from 700 museum visitors engaging in face-to-face interaction: those people who reported more focus after than before participating, also exhibited an increase in brain-to-brain synchrony throughout the recording session. Taken together, our approach allows us to generate rich datasets collected under ecologically natural circumstances to complement laboratory-based research on engagement and learning.

TALK 3: SOCIAL COMMUNICATION SIGNALS AS AUDITORY OBJECTS: TRANSLATIONAL INSIGHTS FROM NEURONAL-LEVEL RESEARCH IN NON-HUMAN PRIMATES

Catherine Perrodin¹; ¹University College London

We, humans, like many other social animals, primarily communicate with each other by exchanging vocal sound patterns. The brains of humans and rhesus macaques were found to contain analogous temporal-lobe "voice" areas that preferentially respond to auditory

communication signals. Yet the neuronal substrates underlying primates' expertise in accurately extracting and encoding information from auditory communication signals had remained elusive. Understanding this requires direct neuronal measurements at relevant stations along the auditory cortical pathway, while socially-relevant communication signals are presented to an awake behaving listener. Here I discuss my recent work investigating the neuronal-level representation of auditory (voice) and multisensory (voice-face) communication signals along the anterior temporal lobe, using extracellular recordings in nonhuman primates. This revealed, for instance, that the apparently overlapping fMRI sensitivity to call type ("what?") vs caller identity ("who?") in the anterior temporal lobe is carried by segregated neuronal populations. We also found considerable modulation of auditory spiking responses by simultaneously presented visual faces within the voice area. I then evaluate how these and other results in nonhuman animals correspond to relevant findings in humans and inform our current understanding of voice-face processing. I end with suggesting avenues for future comparative research. Due to the functional analogy between human and monkey voice areas, rhesus monkeys represent an excellent animal model system for studying the neuronal computations supporting the processing of social communication signals, at a level of resolution that cannot be obtained in healthy humans. Such neuronal-level comparative animal work, even in the context of naturalistic information processing, is however only attainable in tightly controlled lab environments, and requires walking the fine line between artificial, impoverished experimental settings and potentially confounded naturalistic situations. Thus, translating these cross-species insights back to humans requires better bridging across humans and animal models, involving combining identical and complementary methods while moving further towards ethologicallyrelevant experiments.

TALK 4: BRAIN AND COGNITIVE MECHANISMS GOVERNING OBJECT ATTENTIONAL SELECTION IN NATURALISTIC ENVIRONMENTS

Pawel J. Matusz¹; ¹University Hospital Centre (CHUV) - University of Lausanne, Switzerland

In real-world environments, objects are the currency of information processing and object recognition necessitates their attentional selection from among other objects. However, the brain and cognitive mechanisms governing processing of task-relevant and task-irrelevant objects remain poorly understood. First, I will demonstrate that, in multisensory environments, selective and perceptual processing of objects is controlled by integrated auditory-visual top-down object representations ("attentional templates") that operate via both "gain control" and task-dependent brain network recruitment. Many successive "steps" comprising both perceptual and selective object processing have been characterized with ERP recordings during carefully manipulated, simplified unisensory tasks. Attentional

Symposium Sessions 2017 Annual Meeting

selection of objects is traditionally quantified via "the N2pc component": spatially-selective enhancements of neural processing of objects within ventral cortices ~150-200ms post-stimulus. In the spatial-cueing paradigm (Folk et al. 1992) adapted to multisensory contexts, we found N2pc to spatially-uninformative visual cues to be attenuated (and behavioural attention-capture effects weaker) during audio-visual vs. visual search. We then reconsidered our data within an electrical neuroimaging framework. Modulations in the average strength of brain response - but not in average N2pc amplitude - to the visual cues across the usual, 170-270ms time-window predicted the strength of suppression of their behavioural capture effects in audiovisual search. In the subsequent time-window, however, visual cues activated distinct brain sources depending on whether they matched fully vs. partly the multisensory object template. Second, I will demonstrate the importance of developed top-down control for distraction in multisensory environments. Despite the increasing popularity of brain mapping methods in developmental research, large-size behavioural studies involving adaptations of wellunderstood adult visual-attention paradigms can provide vital insights into the role of cognitive development in object processing. In our response-competition task (Lavie & Cox 1997) adapted to childfriendly, multisensory contexts, 6-year-olds were paradoxically "shielded" from distraction by peripheral target-matching audiovisual coloured shapes when search became difficult. In adults and 10-yearolds, both easy and difficult search supported strong multisensory distraction. Our ERP results reveal novel insights into the supramodal, rather than sensory-specific nature of, and the role of flexible mechanisms, other than just "gain control" in, top-down control of attentional object selection in naturalistic, multisensory environments. In turn, our developmentally-inspired work demonstrates the importance of age-dependent trajectories leading to robust adult attentional selection of multisensory objects. Collectively, these findings highlight the unique insights into the brain-cognitive mechanisms governing object processing in naturalistic environments that are afforded by adapting rigorous visual-attention paradigms to multisensory, demand- and capability-varying conditions.

Q&A PERIOD

The speakers will discuss the importance of real-world vs lab-based experiments in advancing theoretical models of the brain and cognitive mechanisms governing object processing in naturalistic environments, and take questions from the audience.

Symposium Session 2 GENETICS AND COGNITIVE NEUROSCIENCE: WHAT DOES THE FUTURE HOLD?

Sunday, March 26, 1:30 - 3:30 pm, Bayview

Chair: Ev Fedorenko, HMS, MGH Speakers: Ev Fedorenko, Simon Fisher, Neda Jahanshad, Genevieve Konopka, Fenna Krienen

Over the past thirty years, the field of cognitive neuroscience has blossomed, painting a rich and detailed picture of the brain's functional architecture. Given the long-established heritability of diverse aspects of cognitive and affective function and malfunction (e.g., in developmental cognitive disorders and psychiatric illness), questions naturally arise about the relationship between the brain's functional organization and the genetic architecture of neural development and function. This symposium brings together four leaders in the emerging field of imaging genetics to talk about i) what these guestions are, ii) the progress that has been made so far in addressing them, and iii) the challenges that arise. The talks will cover a broad range of topics and discuss findings from a wide range of methodologies, from genome-wide association scans of thousands of people to search for common DNA variants linked to brain anatomy and function (Jahanshad and Fisher), to examining patterns of gene expression across the cortex and their relationship to large-scale functional networks (Konopka and Krienen) and the potential modulation of these relationships by cognitive states (Konopka), to looking for correlations between variation in the structure and function of speech and language brain regions and genetic variability (Fisher), to examining differences among primate species in patterns of gene expression at the single cell level (Krienen). The overarching goal is to review the state of the art in this area and to outline the key current and future directions.

TALK 1: (INTRODUCTION): GENETICS AND COGNITIVE NEUROSCIENCE: HOW WE GOT HERE, WHERE WE ARE, AND WHAT THE FUTURE HOLDS.

Ev Fedorenko1; 1HMS, MGH

I will talk about the genesis of the field of imaging genetics, highlighting some of the milestones whose confluence led to its emergence. I will then survey the questions that drive research in this area, and the methods that are currently available to tackle these questions. Finally, I will discuss the challenges we are facing, and ways to potentially overcome them to make faster progress. I will conclude by introducing the four main speakers, who will tell us about some of the exciting findings that are starting to illuminate the relationship between our neural and genetic make-up.

TALK 2: TRANSLATING THE GENOME IN HUMAN COGNITIVE NEUROSCIENCE

Simon Fisher¹; ¹MPI Nijmegen

Recent years have seen dramatic advances in the molecular technologies used to study the genetic architecture underlying brain development and function. My talk will illustrate the promise and pitfalls for scientists studying human cognition in a postgenomic world. I will discuss three complementary examples from the language sciences.

First, low-cost genotyping makes it possible to carry out systematic genome-wide association scans of many thousands of people, allowing us to search for common DNA variants that may influence speech, language and reading skills, not just in disorders but also in the general population. Yet, we still face difficulties in reliably characterizing relevant phenotypes in the cohorts being studied. Second, the advent of whole-genome sequencing gives exciting opportunities to discover rare disruptive mutations in developmental speech/language disorders. However, pinpointing truly causative mutations from next-generation sequencing data turns out to be challenging. Testing the impact of mutations on gene/protein function (for instance, using cellular models) will be key for the future of this field. Third, researchers have begun looking for correlations between variations in structure/function of language-related brain circuits (indexed by neuroimaging) and variability at the genetic level (indexed by genotyping). It has become clear that, even when studying the human brain more directly, most DNA variants have small effect sizes. Thus, careful study design, constraining the search space and considering statistical power, is essential for ensuring that neuroimaging genetic investigations of language deliver robust results. Ultimately, if emerging tools and methods are used wisely, there is enormous potential for successfully bridging gaps between genes, neurons, circuits and human cognition.

TALK 3: THE GENETICS OF BRAIN STRUCTURE AND ITS FUNCTIONAL RELEVANCE — AN INTERNATIONAL COLLABORATIVE EFFORT

Neda Jahanshad1; 1USC

In collaborative efforts involving over 300 scientists from around the world, the Enhancing Neuro Imaging and Genetics through Meta-Analysis Consortium, ENIGMA, has led the discovery of common genetic variants that shape the structure of the living brain as seen through MRI. Genome-wide association studies of regional brain volumes in up to 33,000 individuals have identified dozens of genetic loci that significantly impact brain structural variations. ENIGMA has extended its efforts to discover the genetic influence over variability in cortical structure and its white matter connections, identifying many more genetic loci that influence brain structure. However, the neurobehavior and functional outcome of these specific findings may not be fully understood. Congruent works from other consortia are discovering the genetics of neuropsychiatric disorders and behaviors, and the genetic overlap with brain variability may now be studied, allowing us to identify what neuroanatomical structures, pathways and networks are compromised with genetic susceptibility for the condition. Here, we will outline methods of identifying genetic overlap between diseases, cognition, and brain structure and present the latest findings from the ENIGMA Consortium that map out networks of brain structural variation genetically correlated with behavior and cognitive traits. ENIGMA is an open consortium and welcomes all researchers with brain imaging data to join in on efforts to unlock the genetic factors that shape our brain's structure and function, and identify the neurological mechanisms relating to human behavior, cognition and neuropsychiatric disease.

TALK 4: LINKING GENES TO BEHAVIOR USING HUMAN BRAIN GENE EXPRESSION DATA

Genevieve Konopka¹; ¹UT Southwestern Medical Center

Genetic studies have identified specific genomic loci associated either with cognition in general or with cognitive disorders such as autism or schizophrenia. However, the functional consequences of these genetic variants remain mostly to be determined. In particular, the normal expression and function of these identified genes in the human brain and whether these patterns are altered in cognitive diseases is an ongoing field of inquiry. We have shown that post-mortem human brain gene expression can be harnessed to provide insight into active human brain states. There is direct correspondence between human brain gene expression and resting-state brain activity as assessed by fMRI. Unanswered questions remain though such as whether these correlations change when subjects are actively carrying out specific cognitive tasks or whether these correlations change in individuals who have cognitive disorders. I will present data to address both of these questions. We have carried out comparisons of human brain gene expression with intracranial EEG data from individuals while they are carrying out a memory task. We find that the genes correlated with memory encoding are different than those correlated with human brain activity in the resting state. We have also investigated whether there are genes that have differential correlation with human brain activity in the resting state in patients with autism, strengthening the importance of altered functional connectivity in autism pathophysiology as a consequence of disrupted gene expression networks. These data provide functional confirmation of the genetic basis of cognition and cognitive disorders.

TALK 5: TRANSCRIPTIONAL VARIATION ASSOCIATED WITH CORTICAL SPECIALIZATION AND CONNECTIVITY

Fenna Krienen¹; ¹HMS

The human brain is patterned with large, distributed networks that connect distant regions together. The expansion of the neocortex has also led to the emergence of regions with specialized functions, particularly in association cortex, that are important for cognition. Differences in functional specialization and connectivity may arise from differences in the underlying molecular architecture in regions that support long-range connectivity networks. Our work using the Allen Institute's human brain transcriptional atlas indicates that genes enriched in supragranular layers of the human cerebral cortex (relative to mouse) distinguish major cortical subtypes (sensory/motor, paralimbic, associational). The pattern of transcriptional expression of these genes is associated with large-scale brain network organization measured by functional connectivity MRI (fcMRI). These results raise

questions of whether this transcriptional phenotype is unique to humans or conserved across other primates. I will discuss our recent efforts to characterize what is unique and what is shared between primate species in patterns of gene expression at the single cell level. These data can help us build a system for understanding cortical specializations across association and primary sensory cortices in primate evolution.

Symposium Session 3

MULTIVARIATE APPROACHES FOR NEURAL DYNAMICS: IT'S ABOUT TIME

Sunday, March 26, 1:30 - 3:30 pm, Ballroom B/C Chair: Alex Clarke, University of Cambridge Speakers: Michael Wolff, Anna Jafarpour, Hyojin Park, Tobias Staudigl, Alex Clarke

This symposium showcases emerging multivariate techniques to study the rapid and dynamic processes underlying human cognition. It is undoubted that cognition is achieved in a highly dynamic and interactive brain, yet current research does not fully take into account such dynamics. While techniques like multivariate pattern analysis (MVPA) have become a cornerstone of fMRI research, enabling us to better understand representations and neural coding, fMRI is inherently limited due to its lack of sensitivity to time and dynamics. MEG and EEG provide a prime opportunity to study how neural representations change over time, with multivariate techniques playing an increasingly prominent role. In this symposium we highlight how multivariate analyses of time-sensitive data can reveal novel insights into the dynamics of cognitive processes. This will be shown across a broad range of domains including vision, language and memory, illuminating how these techniques can drive cognitive theories forward.

TALK 1: IMPULSE PERTURBATIONS REVEAL DYNAMIC WORKING MEMORY STATES IN EEG

Michael Wolff¹, Janina Jochim², Timothy Buschman³, Elkan Akyurek¹, Mark Stokes²; ¹University of Groningen, ²University of Oxford, ³Princeton University

It has been suggested that working memory (WM) can be maintained in a silent neural network that is not reliant on continuous WM specific neural activity. In order to measure such activity silent networks, we recently developed an approach that is analogous to echolocation, where a neutral "impulse" stimulus can reveal otherwise hidden neural states in electroencephalography (EEG). Here we report the impulse-specificity of the revealed neural pattern to attended and unattended WM content at different time-points during a visual WM task. Human participants performed a two-item WM task while EEG was recorded. Two randomly orientated visual gratings were presented in the beginning of each trial, and a retro-cue indicated which item would later be tested, rendering the uncued item task-irrelevant. Two neutral

impulse stimuli were presented at fixed time-points in the subsequent delay, before participants reported the cued item using free-recall. The neural responses elicited by the impulse contained activity patterns specific to the cued but not the uncued item. Such WM-specific impulse response functions are also predictive of behavioural performance. This provides clear evidence that the impulse response in WM tasks is specific to WM content, not just stimulation history in general. Furthermore, cross-temporal decoding across the two distinct impulse patterns showed little cross-generalization, suggesting that the underlying WM network changes dynamically over time.

TALK 2: WORKING MEMORY REPLAY PRIORITIZES WEAKLY ATTENDED EVENTS

Anna Jafarpour¹, Will Penny², Gareth Barnes², Robert T. Knight¹, Emrah Duzel^{2,3}; ¹University of California, Berkeley, ²University College London, ³Otto-von-Guericke University Magdeburg

The dominant view of working memory posits that maintaining a series of events requires sequential mnemonic replay. We addressed this using magnetoencephalography (MEG) wherein participants encoded sequences of three stimuli depicting a face, a chair or a fruit, and maintained them in working memory for 5 seconds. Decoding of brain activity revealed that only one of the three stimuli dominated maintenance independent of its sequence position or category; and memory for the selectively replayed stimulus was enhanced. The selectively replayed stimulus had the weakest initial encoding indexed by weaker visual attention signals. These findings challenge the sequential replay theory of working memory and indicate that prioritized replay of weakly encoded events maximizes the fidelity of sequence recall.

TALK 3: NEURAL DECOMPOSITION OF SYNERGISTIC AND REDUNDANT INFORMATION IN INTERACTION BETWEEN AUDIOVISUAL SPEECH RHYTHMS AND BRAIN OSCILLATIONS

Hyojin Park¹, Robin A. A. Ince¹, Joachim Gross¹; ¹University of Glasgow

During audiovisual speech processing, auditory and visual information interact and are integrated leading to a unified percept of speech. Previously, we have shown that low-frequency brain oscillations separately track auditory and visual speech signals to facilitate speech comprehension. However, it is still unclear to what extent auditory and visual information is represented in brain areas, either individually or jointly. Here, we applied a recently developed tool from Information Theory to decompose multivariate mutual information between auditory, visual and brain signals. This method allows quantification of the unique information the brain signals carry for each modality (auditory, visual). Furthermore, we can now address the question if activity in a certain brain area carries a synergistic or redundant representations of both sensory signals. We used low-frequency theta

phase of auditory and visual speech signals and brain signals at each voxel measured by MEG. In an adverse audiovisual speech condition, where attention to visual speech is critical for speech comprehension, we found redundant information in auditory/temporal regions, including posterior superior temporal gyrus, and synergistic information in left motor and inferior temporal cortex. Importantly, this predicted speech comprehension. By means of these novel information theoretic tools, we show for the first time, evidence for neural decomposition of information of entrained audiovisual speech rhythms interacting with brain oscillations for facilitating speech comprehension. Our finding demonstrates how the brain processes audiovisual inputs efficiently - taking advantage of common information as well as making greater information from multisensory inputs that enable remarkable ability in human communication.

TALK 4: SACCADIC EYE MOVEMENTS ARE PHASE-LOCKED TO POSTERIOR ALPHA OSCILLATIONS AND MODULATE NEURAL COMMUNICATION DURING MEMORY FORMATION – EVIDENCE FROM MEG, FMRI AND INTRACRANIAL DATA

Tobias Staudigl¹, Isabella C. Wagner¹, Elisabeth Hartl², Soheyl Noachtar², Christian F. Doeller¹,³, Ole Jensen¹,⁴; ¹Radboud University Nijmegen, ²University of Munich, ³Kavli Institute for Systems Neuroscience, ⁴University of Birmingham

The sampling of visual information is assumed to be discrete rather than continuous (VanRullen & Koch, 2003), possibly clocked by alpha oscillations at 7-12 Hz (VanRullen et al., 2011). This relatively slow sampling period at 80-140 ms seems at odds with the remarkably fast processing speed of the visual system. This conundrum could partly be resolved if saccades are locked to the phase of ongoing visual oscillations, as investigated in this study. We simultaneously recorded MEG and eye-tracking data from 36 healthy participants during a free viewing encoding task of natural pictures, followed by a memory test. MEG encoding data were aligned to saccade onsets. Significantly higher phase-locking in the alpha band (12 Hz) prior to saccades was found for subsequently remembered vs. forgotten pictures. The source of this effect was localized to the parieto-occipital cortex. Intracranial data recorded directly from occipital and parietal cortex of epilepsy patients provided converging results. Additionally, fMRI data was collected to investigate saccade-related hippocampal activation and connectivity with the parieto-occipital cortex during memory formation. The study provides evidence that saccades and brain oscillations are coordinated. This coordination determines what the brain encodes. The results suggest that saccades are timed to the dynamic state of the brain, such that retinal inputs are temporally aligned to the 'optimal' phase of the alpha rhythm. Concurrent connectivity analyses of intracranial, MEG and fMRI data will provide insights into the communication between the visual system and the hippocampus during memory formation, and how this communication is modulated by saccades.

TALK 5: UNDERSTANDING MEANING FROM OUR SENSES: REPRESENTATIONAL SIMILARITY ANALYSIS OF SOURCE-LOCALISED MEG SIGNALS

Alex Clarke¹, Ece Kocagoncu¹, Barry Devereux¹, Lorraine K. Tyler¹; ¹University of Cambridge

Meaning is extracted from sensory inputs through dynamic transformations of information. Representational Similarity Analysis (RSA) for source-localised MEG signals has the promise to uncover representational transformations over time. RSA determines the information represented in distributed activity patterns. The core principle of RSA is similar stimuli, for example objects with a similar shape, produce similar activity patterns in a region that represents this information. By analysing the similarity of neural activity, and how this relates to the similarity of stimulus properties, we can uncover what information is coded in neural signals. Here we show the utility of RSA for source-localised MEG signals. Drawing on two examples, we show how RSA for MEG can reveal the representational transformations during object recognition and speech comprehension. First, we show how alpha oscillatory spatio-temporal patterns in early visual cortex represent low-level visual properties of objects, while object category information is subsequently represented in IT cortex. Further, we show that oscillatory phase signals carry more information than power. Second, using single spoken words and searchlight analysis of MEG source localised signals, we show how lexical and semantic competition engage posterior middle temporal and inferior frontal regions during early spoken input - when word identity remains ambiguous. As the speech input unfolds and the word becomes uniquely identifiable, semantic effects emerge in the middle temporal and angular gyrus. These studies highlight how RSA for MEG sourcelocalised data can reveal dynamic representational transformations as we understand meaning from our senses.

Symposium Session 4

WORKING MEMORY: SUSTAINED ACTIVITY OR DYNAMICS?

Monday, March 27, 10:00 am - Noon, Ballroom A Chair: Tim Buschman, Princeton University

Speakers: Earl Miller, Tatiana Pasternak, Mark Stokes, John

Murray

Working memory is a fundamental component of cognition; providing the workspace on which we hold and manipulate thoughts. Traditionally, the contents of working memory have been thought to be represented in the sustained firing activity of neurons. Indeed, this viewpoint is supported by a rich history of neurophysiological results and theoretical models. However, recent work has begun to challenge this viewpoint, arguing that mnemonic representations are instead dynamic, changing over time. In this symposium, we propose to bring together four experts on the neural representation of working memory in order to contrast the sustained and dynamic models of working

memory. First, Earl Miller will present evidence that working memory representations are highly dynamic, bubbling up in small bursts of activity. Second, Tania Pasternak will show working memory is the result of continuous interactions between prefrontal and sensory cortices. Third, Mark Stokes will provide evidence for 'silent' working memory representations that rely on short-term synaptic changes instead of changes in neural activity. Finally, John Murray will show a stable representation can be decoded from a population of neurons, even if individual neurons are themselves highly dynamic. Together, these speakers will provide four unique viewpoints on the nature of working memory representations, enabling a lively debate on what is the neural code of working memory.

TALK 1: WORKING MEMORY: SUSTAINED ACTIVITY? NOT SO MUCH.

Earl Miller1; 1Massachusetts Institute of Technology

Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the tobe-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity.

TALK 2: NEURAL SUBSTRATES OF WORKING MEMORY FOR VISUAL MOTION

Tatiana Pasternak1; 1University of Rochester

To perform a ubiquitous task of comparing sensory stimuli across time and/or space, subjects must identify these stimuli, retain them in memory and retrieve them at the time of comparison. Thus, the circuitry underlying such tasks must involve cortical regions subserving sensory processing, maintenance, attention and decision-making. In our work we have been examining the circuitry sub-serving working memory for visual motion, with the focus on two reciprocally interconnected regions, the lateral prefrontal cortex (LPFC) and the motion processing area MT. We have characterized the activity in both areas during motion comparison tasks, identifying signals in the LPFC likely to represent bottom-up motion information supplied by MT neurons and signals in area MT likely to represent the top-down influences from LPFC. I will discuss the evidence that the content of

task-related activity in MT and LPFC is a product of continuous interactions between neurons in the two areas during which they process and exchange signals generated during all stages of memoryguided sensory comparisons.

TALK 3: STABILITY OF MIND IN A DYNAMIC BRAIN: WORKING MEMORY FROM A DYNAMIC CODING FRAMEWORK

Mark Stokes1; 1Oxford University

The cognitive neuroscience of working memory faces a major challenge: brain activity is highly dynamic. At first glance these dynamics seem at odds with the very nature of working memory. How can we keep a stable thought in mind while brain activity is constantly changing? Indeed, some of the most influential models in neuroscience are built on the first-level intuition that stability of mind depends on stable brain activity. Standard models often assume that working memory is maintained by static patterns of neural activity, as if frozen in time to preserve a still-frame representation of the past. Here we take a different approach. Within the framework of dynamic coding, we propose that working memory is best understood as a temporary shift in how we process new information, rather than a representation of the past preserved in persistent activity. We explore potential neural mechanisms for dynamic coding, including short-term synaptic connectivity, and consider novel methods for exploring such 'activity-silent' neural states of working memory.

TALK 4: STABLE POPULATION CODING FOR WORKING MEMORY COEXISTS WITH HETEROGENEOUS NEURAL DYNAMICS IN PREFRONTAL CORTEX

John Murray¹; ¹Yale University

In primate cortex, electrophysiological studies find stimulus-selective persistent activity in single neurons as neural correlates of working memory. However, recent studies have highlighted cellular heterogeneity and strong temporal variations in delay activity, at single-neuron and population levels. It remains unclear how neuronal populations maintain memory of stimuli despite complex and heterogeneous temporal dynamics. To address this question, we applied population-level analyses to hundreds of recorded singleneurons from lateral prefrontal cortex of monkeys performing two seminal tasks that demand parametric working memory: oculomotor delayed response, and vibrotactile delayed discrimination. We found that despite complex and heterogeneous temporal dynamics in singleneuron activity, prefrontal cortex activity is endowed with a populationlevel coding of the mnemonic stimulus that is stable and robust throughout working memory maintenance, enabling robust and generalizable decoding compared to time-optimized subspaces. To explore potential mechanisms, we applied these same populationlevel analyses to theoretical neural circuit models of working memory activity. Three previously proposed models failed to capture the key population-level features observed empirically. We propose network

connectivity properties, implemented in a linear network model, which can underlie these features. This work uncover stable population-level working memory representations in prefrontal cortex, despite strong temporal neural dynamics, thereby providing new insights into neural circuit mechanisms supporting working memory.

Q&A PERIOD

Speakers will engage in a discussion on the nature of working memory representations. In particular, we will directly compare the traditional sustained activity model with more recent dynamic encoding models. Discussion will be led by symposium organizer (Tim Buschman) but questions and participation from the audience will also be encouraged.

Symposium Session 5

COGNITIVE MAPS IN THE ORBITOFRONTAL CORTEX FOR GOAL-DIRECTED BEHAVIOR

Monday, March 27, 10:00 am - Noon, Bayview
Chair: Thorsten Kahnt, Northwestern University
Speakers: Nicolas W. Schuck, Peter Rudebeck, Geoffrey
Schoenbaum, Erie Boorman, Thorsten Kahnt

In contrast to habitual action, goal-directed behavior is sensitive to the current value of stimuli, actions, and outcomes, all of which depend on the state of the organism and the environment. Decades of research have shown that the orbitofrontal cortex (OFC) is important for goaldirected behavior; what has remained unclear is which representations and computations are processed within this region that make it so critical for these behaviors. A recent proposal is that the OFC contains "cognitive maps" of the task space, which represent the current state of the environment that is relevant for the decision at hand. Such maps could be used to perform simulations and make inferences about the value of unexperienced states and outcomes. One central prediction of this hypothesis is that OFC activity must represent far more than expected value, but all relevant features of the current decision problem, such as outcome identity, context contingencies, and other unobservable variables that are necessary for optimal behavior. Speakers in this symposium will discuss recent results from experiments across species (rodents, monkeys, and humans) and methods (lesions, electrophysiology, optogenetics, and pattern-based fMRI) that test different aspects of this hypothesis. Together, the findings presented in these talks provide evidence that the OFC supports goal-directed behavior through a cognitive map of the state space, which may complement spatial maps previously identified in the hippocampus.

TALK 1: ORBITOFRONTAL CORTEX REPRESENTS A COGNITIVE MAP OF STATE SPACE

Nicolas W. Schuck¹; ¹Princeton University

Much research has suggested a role of OFC in learning as well as decision-making, but what precisely that role is remains unclear. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented. This representation is especially critical for decision-making and learning when states are unobservable from sensory input. To test this idea, we apply pattern- classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that (a) unobservable task states can be decoded from activity in OFC, (b) decoding accuracy is related to task performance and the occurrence of individual behavioral errors and that (c) similarity between the neural representations of consecutive states correlates with behavior. Moreover, I will present recent results that offer insights into how OFC's state representation changes with task practice. Overall, our results support the idea that OFC represents a cognitive map of task space.

TALK 2: GOAL-DIRECTED BEHAVIOR AND COGNITIVE MAPS IN MONKEY ORBITOFRONTAL CORTEX: EVIDENCE FROM LESION AND NEUROPHYSIOLOGY STUDIES

Peter Rudebeck1; 1Mount Sinai

Orbitofrontal cortex (OFC) is thought to play a central role in goaldirected behaviors. A development of this idea is that OFC is involved in representing maps of task space. This latter idea has had a profound effect on thinking about the functions of OFC, but there is still uncertainty about which parts of OFC are critical for goal-directed behavior and the neural mechanisms of task space. Here I will describe two experiments in monkeys that have: 1) helped to define the specific parts of OFC that are involved in goal-directed behavior, and 2) provide some evidence of encoding of task space in OFC. The first experiment showed that the OFC, specifically Walker's areas 11 and 13, and not other parts of OFC are critical for goal-directed behavior as assessed by the reinforcer devaluation task. The second experiment, compared how neurons in OFC encoded stimulus-reward values when the map of task space was stable through over learning versus then when subjects had to construct task space through learning which stimuli were associated with the greatest reward value. Fewer neurons in OFC encoded stimulus-reward values when stimulus-reward values had to be constructed as opposed to when they were well learned. One potential explanation for these differences in encoding is that during learning, the task space represented in OFC (i.e. stimulus attributes) is pruned until only those that lead to the greatest amount of reward are encoded across the neurons in OFC. These data help to constrain theoretical accounts of OFC function.

TALK 3: ORBITOFRONTAL STATE REPRESENTATIONS FALL APART IN INTERESTING WAYS WITHOUT HIPPOCAMPAL OUTPUT

Geoffrey Schoenbaum¹; ¹NIH/NIDA IRP

The OFC has been posited as a "cognitive map" of task state, encoding relationships between the cues in the world that determine when different behaviors are relevant. The hippocampus has also been identified as a cognitive map, largely due to its prominent spatial tuning. The emerging similarity in the proposed roles of these two areas is intriguing, particularly because there is relatively little work relating the two areas, despite a strong anatomical relationship. Thus the hippocampus might support OFC state representations by signaling spatial information or hippocampal input might convey higher-order relationships between combinations of disparate features of the world. To distinguish between these possibilities, we optogenetically inactivated neurons in the ventral subiculum, while recording single unit activity in the OFC of rats performing an odorguided decision task that required rats to represent spatial information while also integrating it with information about the identity and value of expected outcomes. We found that rats were slower to adjust to changes in action-outcome contingencies when hippocampal output was suppressed. In addition, ventral subiculum inactivation caused a strong reduction in spatial encoding related to the action the rats executed on each trial. However, suppressing hippocampal output also abolished integration of the other features of the expected outcome. Thus without hippocampus, single units and ensembles in OFC were able to represent either the identity or the value of the expected outcome, but they did not represent the location nor were they able to effectively integrate identity and value on individual trials.

TALK 4: COMPUTATIONAL AND REPRESENTATIONAL ANALYSIS APPROACHES TO ASSOCIATIVE LEARNING

Erie Boorman¹; ¹UC Davis

Behavioral neuroscience has made dramatic strides through the combination of formal models of behavior with neural signals. One key example is the prediction error – a central component of many learning algorithms. Prediction errors may refer to value estimates, outcome identities, or social attributes, among other variables. I will present a series of studies that highlight how formal models can be used as a bridge between neural activity, and learning behavior, in this variety of forms. I will then show how 'representational' analysis techniques – namely cross-stimulus suppression and multivariate pattern analysis – can be used to probe the impact of prediction errors on neural representations locally or in distant brain regions. The coupling of computational models of behavior with such 'representational analysis' approaches holds promise for probing the trial-by-trial dynamics of other learning and representation questions.

TALK 5: FLEXIBLE STATE REPRESENTATIONS OF SPECIFIC REWARDS IN THE HUMAN ORBITOFRONTAL CORTEX

Thorsten Kahnt¹; ¹Northwestern University

Goal-directed behavior is sensitive to the current value of specific This requires independent and outcome-specific representations of reward that can be updated "on the fly" based on changes in the internal or external environment. The orbitofrontal cortex (OFC) has been proposed to host such state representations in the form of cognitive maps. In principle, specific updates could be implemented either by changing representations of specific rewards directly in OFC, or by changing the assignment of value to these rewards, either within OFC, or in downstream regions such as ventromedial prefrontal cortex (vmPFC). To shed light on how representations of specific rewards are updated in the human OFC, we utilized sensory-specific devaluation of appetizing food odors in combination with a decision-making task and pattern-based neuroimaging. We find that after selective satiety, reward identity representations in lateral OFC were diminished for the sated food odor, but retained for the non-sated counterpart. In addition, identity general decision signals in the vmPFC were similarly maintained for the non-sated, but not for the sated reward identity. We find that functional connectivity between the OFC and the vmPFC was modulated by satiety such that connectivity was stronger for non-sated compared to sated odors after the meal. Moreover, these connectivity changes were correlated with individual differences in satiety-related choice behavior. These findings demonstrate how representations of specific rewards in the OFC are flexibly updated by devaluation and linked to identity-general decision values in the vmPFC to guide goal-directed behavior.

Symposium Session 6

TOP-DOWN FUNCTIONS OF NEURAL OSCILLATIONS FOR SPEECH AND LANGUAGE PROCESSING

Monday, March 27, 10:00 am - Noon, Ballroom B/C

Chair: Lars Meyer, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Speakers: Lars Meyer, Nicola Molinaro, Lin Wang, Malte Wöstmann, Benedikt Zoefel

Research on the neural oscillations underlying speech perception has an enormous momentum, but the oscillatory interaction of top-down cognitive mechanisms (e.g., attention) and linguistic knowledge (e.g., syntax, semantics) with bottom-up auditory processing is poorly understood. The progressive work of our speakers shows how oscillations interact top-down with the readout of speech rhythms through linguistic prediction formation, adjustment of information extraction abilities, and selective attention. Lars Meyer will argue that low-frequency oscillations do not only serve to impose abstract syntactic structure upon the speech stream, but also to align sensory

attention with linguistic informativity. Nicola Molinaro will highlight the causal role of low-frequency oscillations in driving the interaction between cortices that track speech and cortices that modulate speech tracking. Lin Wang will highlight the role of pre-stimulus oscillatory power in the generation and evaluation of contextual predictions for upcoming linguistic input. Malte Wöstmann will show how selective attention in multi-stream situations modulates the oscillatory read-out of speech acoustics. Benedikt Zoefel will illustrate that speech entrainment can persist in the absence of pronounced acoustic rhythms, indicating that the auditory system is able to extract and adjust to high-level features that are present in the speech signal and intimately linked with comprehension. Our timely symposium advertises the powerful mechanism of neural oscillations at the interface of speech perception, domain-general cognition, and language comprehension. The symposium will benefit auditory neuroscientists, neurolinguists, and CNS members from neighboring domains to further explore the roles of neural oscillations in the dynamic interplay between bottom-up and top-down processes.

TALK 1: DELTA-BAND OSCILLATIONS IMPOSE SYNTACTIC STRUCTURE UPON SPEECH, ALIGNING EXCITABILITY WITH LINGUISTIC INFORMATIVITY

Lars Meyer¹; ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Speech perception is often conceptualized as a bottom-up process that relies on the tracking of acoustic rhythms by phase-synchronized neural oscillations. Recent work indicated that such tracking isn't restricted to acoustic rhythms, but does also occur in response to the abstract syntactic structure that speech symbolizes. Based on two electroencephalography studies, I will here argue that synchronicity between delta-band neural oscillations and syntactic structure does not reflect a mere tracking, but an imposition based on individual linguistic preferences—top-down aligning sensory attention with highlevel linguistic informativity. First, I will show that via delta-band oscillatory phase, internal syntactic preferences can top-down drive sentence interpretations that contradict bottom-up acoustic cuesdecreasing speech entrainment of delta-band oscillations. Second, I will show that once in synchronicity with the internally generated syntactic structure, the phase progression of the delta-band oscillation sets sensory attention (as indexed by the amplitude of canonical event-related brain potentials to linguistic violations) into an optimal alignment with linguistic complexity (as quantified by informationtheoretic metrics). Delta-band neural oscillations thus appear to subserve powerful top-down mechanisms that harmonize the speech percept with internal requirements of information extraction—likely compensating for the ambiguity and sparse rhythmicity of speech acoustics.

TALK 2: LOW-FREQUENCY OSCILLATIONS MEDIATE TOP-DOWN ACTIVITY DURING SPEECH PROCESSING

Nicola Molinaro¹; ¹Basque Center on Cognition, Brain, and Language, San Sebastian, Spain

Speech processing involves neural oscillatory activity within a frontotemporo-parietal network that track quasi-rhythmic speech modulations in different frequency bands (prosodic - delta band -, syllabic - theta - and phonemic information - gamma). Different mechanisms (de-multiplexing and segmentation steps) have been proposed to deal with the mapping of these spectral components into abstract phonological representations. Less is known about the topdown mechanisms that play a crucial role in natural speech. Speech processing models associate neural computations in temporal regions to perceptual speech sampling processes, while operations in frontalparietal regions are linked to higher-order processes (such as attention). Still, there is no comprehensive view of the neural dynamics that allow perceptual and top-down processes to interact while extracting meaning from speech. In a set of studies (in which we also manipulated the informativity of simultaneous visual cues for speech perception), we analyzed MEG data from normal hearers while they were listening to continuous speech. First, we determined how different brain areas within the fronto-temporo-parietal network deal with the de-multiplexing (Coherence analysis) and the segmentation (Phase Amplitude Coupling analysis) pre-processing steps. Then, we showed (Transfer Entropy analysis) how low-frequency (delta and theta band) neural oscillations mediate the interaction between temporal brain regions (where gamma activity reflect speech sampling) and fronto-parietal areas (which gather contextually relevant information to modulate sampling activity). Our findings provide compelling evidence that low-frequency oscillatory brain dynamics, during continuous speech, mediate the complex interactions between the different nodes of the speech processing network.

TALK 3: LANGUAGE PREDICTION IS SUPPORTED BY COUPLING BETWEEN FRONTAL GAMMA AND POSTERIOR ALPHA OSCILLATIONS

Lin Wang1; 1Tufts University, Medford, USA

Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography (MEG) study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Prior to the sentence-final words, we observed stronger alpha power suppression for the highly compared to lowly constraining sentences in left inferior frontal cortex, left posterior temporal region, and visual word form area (VWFA). Importantly, the temporal and VWFA alpha power correlated negatively with left frontal gamma power for the highly constraining

sentences, in both the prediction and integration periods of the sentence-final words. We suggest that this negative correlation reflects the initiation of an anticipatory unification process in the language network. Our study extends previous research on the function of alpha oscillations by demonstrating that decreased alpha power reflects the engagement of higher-level language areas and that language processing might be implemented by the coupling between the alpha and gamma activities.

TALK 4: ATTENTION GOVERNS NEURAL OSCILLATORY RESPONSES TO SPEECH

Malte Wöstmann¹; ¹University of Lübeck, Lübeck, Germany

Speech comprehension requires listeners to dynamically regulate auditory attention. Listeners must follow (i.e., "track" sensorily) the target speech signal but also disengage (i.e., "functionally inhibit") brain areas processing distracting information. The phase of slow neural oscillations (~1–5 Hz) faithfully tracks speech signals, while the power of alpha oscillations (~8-12 Hz) reflects inhibition of irrelevant will distraction. present two human magneto-/electroencephalography (M/EEG) studies that demonstrate how selective attention governs neural alpha oscillations to selectively block the read-out of sensorily-tracked distractor speech. First, when attending to one of two spatially separated speech streams (n = 19), listeners' sensory entrainment (1-5 Hz phase-locking) and alpha power lateralisation in the MEG were in sync with ongoing speech, but with a ~140° phase lag of alpha power. Notably, the extent to which listeners rhythmically modulated auditory and parietal alpha power predicted their ability to successfully attend. Second, when ignoring an acoustically degraded speech distractor (n = 23), listeners' neural alpha oscillatory power was not driven by bottom-up speech acoustics per se but by the focus of top-down attention: Alpha power decreases when better acoustics facilitates comprehension of attended speech, but here, alpha power instead increased as better acoustics of the tobe-ignored speech aggravated distraction. In sum, these data demonstrate how auditory attention utilises two complementary neural oscillatory mechanisms of low-frequency, phase-locked speech tracking versus alpha power-mediated, non-phase-locked attentional filtering.

TALK 5: LOW- AND HIGH-LEVEL PROCESSES UNDERLYING OSCILLATORY PHASE ENTRAINMENT TO SPEECH SOUNDS

Benedikt Zoefel¹; ¹MRC Cognition and Brain Sciences Unit, Cambridge, UK

Neural oscillations adjust their phase to rhythmic stimulation, a phenomenon called phase entrainment. This mechanism seems to be of particular importance for the processing of speech: Assumed to underlie speech comprehension, phase entrainment is omnipresent in current theories of speech processing. Nevertheless, speech is a complex stimulus and both low- and high-level processes might

contribute to phase entrainment as it is commonly reported in the literature. Our aim was to disentangle these processes and provide a detailed characterization of the neural mechanisms underlying phase entrainment to speech. For this purpose, we constructed speech/noise stimuli without systematic fluctuations in sound amplitude or spectral content (here termed "low-level" features), while keeping both fluctuations in high-level features (including phonetic information) and intelligibility. In human psychophysical and electroencephalographic (EEG) data as well as primate intracranial recordings, we were able to show that phase entrainment can be observed in response to speech sounds in which systematic fluctuations in low-level features have been removed. This "high-level" entrainment shows specific characteristics and seems to reflect a particularly efficient mechanism of speech processing which is conserved across species. Finally, the relation between phase entrainment and speech comprehension remains debated. Based on the data presented here and elsewhere, we discuss possible reasons (and solutions) for this controversy and propose how brain stimulation techniques can help to clarify the role of oscillatory phase entrainment for the comprehension of speech sounds.

Symposium Session 7

DRIVING THE BRAIN TO UNDERSTAND COGNITION

Tuesday, March 28, 10:00 am - Noon, Bayview

Chair: Jim Herring, Donders Institute - Centre for Cognitive Neuroimaging

Speakers: Vincenzo Romei, Flavio Frohlich, Christian Keitel, Anne Kösem, Jim D. Herring

Neuronal oscillations have long been studied for their role in coordinating neuronal activity supporting cognitive processing. Particular frequency bands have been associated with specific functions such as the alpha band in top-down allocation of computational resources, theta band oscillations in memory and speech, and gamma-band oscillations in bottom-up stimulus processing. To study the causal role of these oscillations in cognition recent attempts have been made to drive the brain using various techniques including sensory stimulation and non-invasive brain stimulation techniques such as transcranial alternating current stimulation and transcranial magnetic stimulation. With these techniques it is in principle possible to externally 'entrain' endogenous oscillations and study the effects on brain and behavior. An important role has been shown for both amplitude and phase of oscillations in different bands. This symposium will present pioneering research studying the role of neuronal oscillations in cognition using state-ofthe-art techniques to drive the endogenous rhythms of the brain. The symposium aims to increase insight on the functional role of neuronal oscillations in cognition and hopes to showcase developments aimed at elucidating the causal role of oscillations.

TALK 1: SHAPING BRAIN WAVES: AN INFORMATION-BASED APPROACH

Vincenzo Romei¹; ¹University of Essex (UK)

Noninvasive Transcranial Brain Stimulation (NTBS) techniques have prompted a paradigm shift in the study of brain oscillatory functions in human behaviour from a correlational to a causative approach. Mimicking endogenous brain oscillations through tACS or rhythmic TMS has allowed shaping both the amplitude and phase components of the targeted oscillation, when the frequency of stimulation matches the endogenous oscillatory frequency, ultimately impacting behaviour. Here I will show how information-based approaches of NTBS to the study of brain oscillations can further our understanding of their functional relevance by systematically manipulating a third component kept constant in previous research: i.e. the endogenous frequency itself. Interindividual variability within a frequency band can account for interindividual variability in perceptual and cognitive processes. For example the length of the occipital alpha cycle (range: 8-12Hz) predicts the size of the temporal binding window determining the flashbeep illusion: the slower the alpha cycle, the bigger the temporal binding window. As another example, the length of the parietal theta cycle (range: 4-7Hz) predicts the amount of items successfully held in spatial working memory: the slower the theta cycle, the better the working memory capacity. By externally imposing slightly slower or faster frequencies than the endogenous frequency I will show that we can shape behaviour in expected directions. Finally, I will show that information-based approaches of NTBS testing functional connectivity between interconnected areas can be implemented to manipulate long-range, inter-areal oscillatory activity and causally assess their function, through the use of a novel cortico-cortical-paired associative stimulation protocol.

TALK 2: ENGAGING CORTICAL OSCILLATIONS WITH TRANSCRANIAL ALTERNATING CURRENT STIMULATION

Flavio Frohlich¹; ¹University of North Carolina at Chapel Hill

Cortical oscillations, rhythmic activity patterns in cortex, have recently emerged as a promising target for non-invasive brain stimulation. In particular, transcranial alternating current stimulation (tACS) applies a weak, sine-wave electric current to the scalp to modulate endogenous cortical oscillations. Early studies point to successful target engagement in terms of modulation of activity patterns and associated cognitive functions. Yet, the field has reached a crossroad since the number of electrophysiological studies has continued to be vastly outnumbered by behavioral studies that do not directly demonstrate target engagement. Several additional issues have emerged: state-dependence of stimulation effects, lack of placebo-controlled double-blind studies, and finally continued uncertainty about the mechanisms of action. Here, we will give an update on our efforts to elucidate the mechanisms of action and applications of tACS by combining computer simulations, animal studies, and human studies, including

clinical trials. Our computational stimulations provide support for the presence of entrainment and resonance as the main mechanism of tACS and demonstrate the pronounced state-dependence of the response profile, linking the state of the thalamocortical system to the response to tACS. We then demonstrate how alpha oscillations are modulated by tACS in the ferret, an intermediate model species, which exhibits pronounced alpha rhythms in the dark in absence of visual input. Finally, we will give an update on target engagement of thalamocortical oscillations in human participants, with particular focus on our recently developed feedback tACS for the modulation of sleep spindles and on our ongoing clinical trials of tACS for mood disorders.

TALK 3: DRIVING VISUAL BRAIN RHYTHMS THROUGH DYNAMIC SENSORY STIMULATION

Christian Keitel¹; ¹University of Glasgow

From the earliest days of recording Human brain activity, researchers have been fascinated by the possibility of driving brain rhythms externally by means of dynamic visual stimulation. This approach has since inspired diverse lines of research into the neural mechanisms underlying visual perception and its modulation by cognitive functions, such as attention. Here, I will go through a selection of studies following a trajectory from using simplistic, periodic rhythmic flickering lights up to complex, quasi-periodic more naturalistic stimuli that our visual system typically encounters. This compilation will highlight commonalities between the different types of stimulation in probing cortical processing of dynamic visual input. Further, it will serve to demonstrate what we can gain by exploring the dynamic range of visual stimuli beyond strictly periodic cases. Ultimately, these findings will be discussed in the light of the idea that stimulus-driven brain rhythms involve entrainment of endogenous brain rhythms.

TALK 4: THE CAUSAL ROLE OF NEURAL ENTRAINMENT IN SPEECH COMPREHENSION

Anne Kösem^{1,2}; ¹Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands, ²Radboud University, Nijmegen, The Netherlands

Low-frequency neural entrainment to speech is hypothesized to have a causal role in the parsing of the speech signal into relevant linguistic constituents. In this MEG experiment, we aimed at manipulating the entrainment of oscillations in auditory cortex to test its direct consequences on speech perception. We departed from the hypothesis that neural entrainment reflects temporal predictions: the brain would internalize the rhythms of preceding signals to process the ongoing sensory input. Hence, ongoing neural oscillatory activity could be manipulated by changing the dynamics of past sensory stimulation. Using speech sentences that suddenly increased or decreased in rate, we thus investigated if neural entrainment to past speech lasts after the speech rate changes, and if persisting neural entrainment influences speech perception. The beginning of the sentence was

either presented at a fast or a slow speech rate, while the last three words (target window) were displayed at an intermediate rate across trials. Participants were asked to report the perception of the last word of the sentence, which contained an ambiguous vowel. The results show that neural entrainment lasted after rhythmic stimulation: during the target window, we observed oscillatory activity that corresponded in frequency to the preceding speech rate. The persisting neural entrainment correlated with speech perceptual biases: participants who showed stronger persisting neural entrainment were more influenced by the past speech rate in their perception of the last word. These findings provide empirical support for oscillatory models of speech processing, suggesting that neural oscillations actively modulate speech comprehension.

TALK 5: ATTENTIONAL MODULATION OF EXTERNALLY DRIVEN ALPHA OSCILLATIONS

Jim D. Herring¹; ¹Donders Institute, Nijmegen, The Netherlands

Alpha oscillations have been proposed to be involved in the allocation of neuro-computational resources. While these oscillations are typically generated endogenously, they can also by elicited by external stimulation in which the brain responds with 'ringing' at ~10 Hz. Examples are TMS-locked responses (Rosanova et al., 2009) and 'perceptual echoes' (VanRullen et al. 2012). It is unclear whether these are resulting from evoking endogenous oscillations or whether they result from evoked responses (ERFs/ERPs). We hypothesize that if the oscillatory responses decrease with attention they reflect endogenous alpha oscillations, whereas if they increase with attention they reflect evoked responses. In a combined TMS-EEG study we show that a single pulse of TMS elicits an alpha-like response. Importantly, this response is modulated by top-down visual attention similarly to endogenous alpha oscillations: the magnitude of the response increases with a decrease in visual attention. Furthermore, the attentional effect is proportional to the subject's ability to modulate their endogenous alpha activity with attention. In a second MEG study, we induced so-called 10 Hz 'perceptual echoes' in visual cortex by applying broadband visual stimulation. The perceptual echoes can be thought of as impulse response functions of the brain to changing visual input. Our key finding was that perceptual echoes increased with low visual attention. Both studies suggest that endogenous and externally driven alpha oscillations are functionally similar mechanism and thus likely to share the same mechanism. As such, alpha oscillations are likely to play a key role for the temporal coordination of neuronal firing not only during rest but also during processing of external stimuli.

Symposium Session 8

DECIDING HOW TO DECIDE: UNDERSTANDING WHEN AND WHY THE BRAIN ALLOCATES COMPUTATIONAL RESOURCES TO GOAL-DIRECTED BEHAVIOR

Tuesday, March 28, 10:00 am - Noon, Ballroom A

Chair: Ross Otto, McGill University

Speakers: Hanneke den Ouden, Anne Collins, Sam Gershman,

Amitai Shenhav, Ross Otto

Everyday experiences are defined by decisions, from deciding what to eat for lunch to making career choices, but not all of our decisions come about the same way: some decisions are made with effort and are slow, while other decisions are easier and made quickly. While the question when and why an individual decides to expend-or withhold-cognitive effort in the service goal-directed behavior has been the topic of considerable interest to cognitive neuroscientists, a spate of computationally-informed approaches are beginning to yield critical leverage in understanding how the human brain solves this problem. This symposium will spotlight the work of five emerging researchers taking complementary approaches to understanding this question. Anne Collins will explore how the interplay between effortful working-memory based systems and more primitive reinforcementlearning systems unfolds in the brain. Sam Gershman will use a neurocomputational model to show how the brain selects between reinforcement learning processes on the basis of prediction error signalling. Hanneke den Ouden will explore how heuristic responding may be driven by biased instrumental learning. Amitai Shenhav will present a unified theory of anterior cingulate function based on costbenefit principles of cognitive effort. Finally, Ross Otto will reveal how the cost of time, formalized by reinforcement learning, directs our exertion of cognitively effortful processes. Together, these talks present cutting-edge perspectives on how the brain allocates processing resources in the service of maximizing rewards, across diverse behavioural repertoires.

TALK 1: MOTIVATIONAL BIASES IN LEARNING AND CHOICE

Hanneke den Ouden¹, Jennifer Swart¹; ¹Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands

Pavlovian conditioning is the most primitive and computationally parsimonious form of learning. Pavlovian responses may help reduce computational load by shaping our actions in an evolutionarily hardwired manner. Instrumental learning systems, in contrast, allow organisms to adaptively learn which actions are good in specific environments. Pavlovian and instrumental systems are often presented as a dichotomy, respectively driving cue-based motivational biases versus adaptive 'rational' choice. For example, a number of recent studies on motivational biases of action (e.g. appetitive activation / aversive inhibition) have interpreted these responses in terms of Pavlovian response biases. An alternative possibility is that adaptive systems have evolved to take into account prior likelihoods

of certain response-outcome associations, and learn these preferentially to minimize computational expenses. Thus, motivational biases of behavioural activation may additionally arise from biased instrumental learning. Such a learning bias would provide a cognitively efficient mechanism for rapid learning of likely action-outcome associations whilst protecting against learning spurious associations. We will present work that (i) probes whether these biases in subserve instrumental learning the well-established reward/punishment biases of motivated action or inaction, and (ii) probe the pharmaco-computational mechanisms that subserve these biases, using a combination of EEG, psychopharmacology and computational modelling of behaviour.

TALK 2: WORKING MEMORY CONTRIBUTES TO REINFORCEMENT LEARNING COMPUTATIONS

Anne Collins1; 1University of California, Berkeley

When learning to make choices in different situations, humans can use multiple strategies in parallel, including working memory and reinforcement learning. Working memory allows very fast learning, but is cognitively effortful as well as limited in how much information can be retained, and for how long. Reinforcement learning has broader scope, but is more incremental and slower. Here, we investigate whether these two processes are independent in their computations and simply compete for choice, or if they interact at a deeper level. In multiple independent games, participants learned to select actions for varying numbers of new stimuli. When learning a low number of associations, performance was near optimal, indicating efficient use of working memory. With increasing number of associations to learn, performance gradually decayed to a more incremental learning profile, as expected from a greater contribution of slower reinforcement learning mechanisms when working memory contribution became less reliable and more costly. We will show evidence from fMRI, EEG and behavioral studies that the working memory process influences reinforcement learning computations. Specifically, we find that the update of estimated values with reward prediction errors was surprisingly weakened in the easier conditions where performance was best. We will use computational modeling to show that this is compatible with a competitive or cooperative interaction between working memory and reinforcement learning, but not with a competing independent processes theory. Preliminary evidence supports a cooperative hypothesis, whereby working memory contributes expectations to the computation of the reward prediction error.

TALK 3: NEUROCOMPUTATIONAL PRINCIPLES OF META-CONTROL IN REINFORCEMENT LEARNING

Sam Gershman¹, Wouter Kool¹, Fiery Cushman¹; ¹Harvard University

trade-offs. Model-based approaches construct a "cognitive map" that can be used to simulate future events. This approach is flexible

(predictions change instantaneously whenever the cognitive map changes) but computationally expensive (many simulations are required to compute a value). By contrast, model-free approaches directly store cached value estimates in a look-up table, making valuation fast but inflexible (cached values will not change without additional experience in the task). I describe a computational approach to arbitration between the two approaches: a hypothetical metacontroller uses a policy gradient algorithm to allocate based on reward prediction errors. Behavioral and neural data support this architecture, suggesting a pivotal role for dopaminergic prediction error signaling in meta-control. In particular, we find that the meta-control model can predict, on a trial-by-trial basis, which system controls behavior, and these trial-by-trial changes are reflected in the striatal prediction error signal measured using fMRI. When the model-based system is in control of behavior, the prediction error signal is based on a modelbased value signal, consistent with our model predictions.

TALK 4: WEIGHING THE COSTS AND BENEFITS OF MENTAL EFFORT

Amitai Shenhav¹, Sebastian Musslick², Matthew Botvinick³, Jonathan Cohen²; ¹Brown University, ²Princeton University, ³Google DeepMind

Cognitive control is known to be effortful, yet little is known about how we determine how that effort gets allocated. I will describe recent theoretical and empirical work aimed at understanding this process through the lens of value-based decision-making, focusing on our proposal that individuals choose how much and what kind of control to allocate according to the predicted benefits (e.g., reward likelihood) and the costs associated with increased effort exertion. These combine to determine what we refer to as the Expected Value of Control (EVC). The EVC framework accounts for interactions between incentives, cognitive performance, and task choice observed in behavioral performance. It also offers a more comprehensive account of dorsal anterior cingulate function, and a common explanation for its purported roles in the motivation, decision-making, and cognitive control literatures. In particular, the theory suggests that dACC integrates information relevant to the costs and benefits of control allocation (including signals of reward and cognitive demand), and signals to downstream regions the allocation that maximizes EVC, enabling this control to be exerted. The framework also makes contact with approaches from computer science for deciding how to decide between computationally demanding strategies (referred to as rational metareasoning). This work provides a path towards understanding why we may not always choose to make the effort demanded by our academic, work, or social environment, and how variability in these circuits will lead to maladaptive allocation of cognitive control in particular clinical populations.

TALK 5: THE OPPORTUNITY COST OF TIME MODULATES COGNITIVE EFFORT EXPENDITURE

Ross Otto¹, Nathaniel Daw²; ¹McGill University, ²Princeton University

A spate of recent work demonstrates that humans seek to avoid the expenditure of cognitive effort, much like physical effort or economic resources. Less is clear, however, about the circumstances dictating how and when people decide to expend cognitive effort. Here we adopt a popular theory of opportunity costs and response vigor and to elucidate this question. This account, grounded in Reinforcement Learning, formalizes a trade-off between two costs: the harder work assumed necessary to emit faster actions and the opportunity cost inherent in acting more slowly (i.e., the delay that results to the next reward and subsequent rewards). Recent work reveals that the opportunity cost of time—operationalized as the average reward rate per unit time, theorized to be signaled by tonic dopamine levels, modulates the speed with which a person responds in a simple discrimination tasks. We extend this framework to cognitive effort in a diverse range of cognitive tasks, for which 1) the amount of cognitive effort demanded from the task varies from trial to trial and 2) the expenditure of cognitive effort holds measureable consequences in terms of accuracy and response time. In the domains of cognitive control, perceptual decision-making, and task-switching, we found that subjects tuned their response speeds in accordance with the experienced average reward rate: when the opportunity cost of time was high, subjects responded more quickly. That is, expenditure of cognitive effort appeared to be modulated by the opportunity cost of time. Further, and consistent with our account, the strength of this modulation covaried with individual differences in efficacy of cognitive control, operationalized as response slowing on incongruent trials. Taken together, our results provide a cost-benefit informed examination of the circumstances dictating how and when people expend cognitive effort.

Symposium Session 9

MEMORY NEUROMODULATION: HOW DO DIFFERENT STATES OF LEARNING INFLUENCE EPISODIC MEMORY?

Tuesday, March 28, 10:00 am - Noon, Ballroom B/C Chair: Vishnu Murty, University of Pittsburgh Speakers: Katherine Duncan, Vishnu Murty, Matthias Gruber,

Joel Voss, Mara Mather

Memories are not veridical; rather an individual's goals, desires, and affect can influence how they store representations of their environment in long-term memory. To fully understand the selectivity of memory, it is critical to understand how these different internal states of learning modulate episodic memory. A large body of animal research has detailed a variety of neuromodulatory processes influencing hippocampal neurophysiology, providing a theoretical framework to understand how these states of learning could influence

human memory. This symposium features emerging research characterizing how a variety of different states of learning—including novelty, motivation, curiosity, exploration, and arousal-influence how the brain encodes and stabilizes episodic memories. First, Katherine Duncan will present her work characterizing the lingering effect of processes noveltv on biasing mnemonic completion/separation in a manner consistent with cholinergic modulation. Second, Vishnu Murty will present his work demonstrating how motivation, and associated engagement of mesolimbic systems, enhances episodic memory at multiple timescales to support adaptive behavior. Third, Mathias Gruber will present his work investigating how both intrinsic and extrinsic states of motivation enhance episodic memory by facilitating interactions between the dopaminergic midbrain and hippocampus both during and after encoding. Fourth, Joel Voss will present his research showing how states of exploration change individuals learning strategies as well as the structure of memory. Finally, Mara Mather will present recent research detailing how arousal biases memory towards salient information, particularly negative information, in a manner consistent with noradrenergic modulation.

TALK 1: THE LINGERING INFLUENCE OF NOVELTY SHAPES FUNDAMENTAL MEMORY PROCESSES.

Katherine Duncan¹; ¹University of Toronto

Detecting novelty triggers a cascade of neuromodulatory action, which can persistently influence neurons for seconds or even minutes. Given the numerous demonstrations of novelty's influence at a physiological level, we know surprisingly little about the lingering consequences that novelty detection has on the human mnemonic operations supported by these physiological processes. Cholinergic modulation of the hippocampus is particularly suited for shaping human memory. In addition to influencing synaptic plasticity, cholinergic modulation may regulate hippocampal network properties; novelty-induced high levels of acetylcholine could push the hippocampus toward pattern separation, preparing it to form new distinctive memories, whereas familiarity-induced low levels could pull the hippocampus towards pattern completion, preparing it to retrieve associations. Importantly, cholinergic modulation persists for seconds, suggesting that recent novelty or familiarity can shape subsequent mnemonic processing. Here, I present a series of behavioural experiments testing different predictions generated by this cholinergic framework. In Experiment 1, we demonstrate that recent exposure to novelty as compared to familiarity improves people's ability to detect subtle changes, a hallmark of pattern separation (Duncan et al., 2012). In Experiment 2, we demonstrate that recent familiarity as compared to novelty improves people's ability to recall associations, a hallmark of pattern completion (Patil & Duncan, under review). In both studies, the influence of novelty and familiarity decayed over seconds, in line with cholinergic modulation. In Experiment 3, we show that these robust mnemonic biases influence how people use memory to make decisions (Duncan & Shohamy, in press).

TALK 2: MOTIVATION FACILITATES MEMORY AT MULTIPLE TIMESCALES IN SERVICE OF ADAPTIVE BEHAVIOR.

Vishnu Murty¹; ¹University of Pittsburgh

As we navigate through the world, we are inundated with immense amounts of information—too much information to veridically encode into long-term memory. Rather than attempt to encode all of this information, memory is selective. Information that is most relevant to achieving future goals is prioritized in long-term memory. In my talk, I will present a series of behavioral and neuroimaging studies that characterize how motivation facilitates memory encoding for goalrelevant information. I will show how motivational states support memory not only for items directly associated with reward but also for neutral items presented in rewarding contexts. Also, I will present emerging behavioral data showing that reward can retroactively enhance memory for information that is later learned to be reward relevant. Finally, I will present 2 fMRI studies unpacking potential mechanisms supporting these memory enhancements including facilitation of hippocampal-dependent processes during encoding, and hippocampal-cortical interactions during periods of post-encoding rest. Together, these studies support a model in which individuals tailor their memories of the environment depending on their goal states, which provides a foundation of information to support future adaptive behavior in similar environments.

TALK 3: STATES OF REWARD AND CURIOSITY PRIORITIZE LEARNING AND POST-LEARNING DYNAMICS

Matthias Gruber¹; ¹Cardiff University

An adaptive memory system prioritizes salient over less salient information. Several studies have shown how rewards influence learning of specific stimuli, but little is known about how motivational states affect learning and retention. In my talk, I will review not only how states of extrinsic motivation (via monetary incentives) but also how states of intrinsic motivation (via curiosity) affect learning. I will present evidence from a series of fMRI and EEG studies that demonstrate how states of high motivation (via curiosity or reward) prioritize learning and memory consolidation for motivationally relevant but also incidental information. Our results show that the substantia nigra/ventral tegmental area complex and the hippocampus play a critical role in prioritizing retention of memories learned during states of high motivation both during encoding and during post-learning rest. The findings highlight the crucial role of how motivational states modulate learning and consolidation mechanisms.

TALK 4: EXPLORATION MODULATES HIPPOCAMPAL-CORTICAL CONTRIBUTIONS TO EPISODIC LEARNING

Joel Voss1; 1Northwestern University

Exploratory behaviors during learning determine what is studied and when. Exploration should therefore: (1) determine the structured content of resultant memory representations, and (2) allow learning to

be optimized based on goals and strategies expressed during exploration. I will describe a collection of experiments that uses wellcontrolled manipulations of exploration to demonstrate both of these principles and to identify neurocognitive mechanisms for exploration's influence on learning and memory. In these experiments, information that was sampled via active exploration provided structure to memory, such that the content of multi-part episodic memories was organized around the actively explored information. Furthermore, subjects exhibited identifiable visual-sampling strategies that enhanced later memory, demonstrating the optimization of learning via exploration. These phenomena suggest that exploration involves memoryattention iterative interactions, by which the memory representation that evolves continuously over the course of exploration is repeatedly queried in order to strategically guide moment-to-moment visual sampling behavior. Across a wide range of experimental settings, neuroimaging and lesion-deficit evidence suggest that the hippocampus is necessary for this strategic memory-attention dialogue, which is supported by hippocampal interactions with distributed prefrontal and parietal regions. Furthermore, by manipulating the timecourse of exploration, separate contributions from hippocampus versus fronto-parietal network regions were dissociated. Hippocampal-dependent memory is thus a dynamic process, rather than a static record of experience. These findings show how the exploration state is a fundamental modulator of hippocampalcortical interactions that build memories, and pinpoint unique exploration-related cognitive operations performed by hippocampus versus distributed cortical networks.

TALK 5: A POTENTIAL ROLE FOR NOREPINEPHRINE HOT SPOTS IN LONG-TERM MEMORY FOR NEGATIVE STIMULI.

Mara Mather¹, Shawn Nielsen¹, Michiko Sakaki², Jasmine Raw²; ¹University of Sourthern California, ²University of Reading

Arousal makes salient or important stimuli stand out even more while everything else fades in the background. The locus coeruleusnorepinephrine (LC-NE) system is activated during physiologically arousing situations and plays a key role in increasing the gain on mental representations. This amplification of gain may be especially adaptive in dangerous situations, when it can be critical to focus on threatening stimuli. In addition, negative stimuli tend to be more salient than positive stimuli across a broad range of situations and contexts. In this series of behavioral and neuroimaging studies, we tested the hypothesis that arousal-induced LC activity enhances encoding of negative stimuli more than positive or neutral stimuli. To increase tonic arousal, we had participants either squeeze a handgrip as hard as they could several times, or just rest their hand around a water bottle before viewing a series of pictures. The handgrip manipulation increased pupil dilation, suggesting that it reliably increased the LC activity and NE levels. In addition, the handgrip manipulation enhanced subsequent memory for the negative stimuli compared with the positive and neutral stimuli. Furthermore, these effects were stronger

in women in low ovarian hormone states (either on hormone contraception or during the follicular phase of their menstrual cycle), consistent with effects of estrogen on the noradrenergic system. These findings indicate that higher tonic levels LC-NE activation support an encoding advantage for negative stimuli—a bias that may be adaptive in many high stakes situations but may lead to disadvantages in situations where positive stimuli are informative.

Poster Schedule

Poster sessions are scheduled for Saturday-Tuesday in Pacific Concourse Exhibition Hall of the San Francisco Hyatt Regency. All attendees must present their CNS 2017 name badge to enter the exhibit hall. Do not leave personal items in the poster room. The presenting author must be present during the assigned session. You may post your materials on the board assigned to you at any time after the "Set-up Begins" time (listed below), but before the beginning of the assigned poster session. You must remove your poster promptly no later than the time listed above in "Take-down Complete." Any posters left up after the "Take-down Complete" time may be discarded. Note that presenters are asked to set up poster in advance of their session and to leave their poster up for a period following their session (see your specific session for hours). This is to allow attendees to view posters outside the formal session times. Only registered poster presenters, wearing a CNS 2017 meeting badge, for the current session and exhibitors will be allowed in the exhibit hall during set up and take-down hours. All other attendees will be turned away at the door. No attendee or exhibitor will be allowed to enter the exhibit hall after the Closed for the Day- No Entry hours.

Poster Session	Date	Setup Begins	Session Begins	Tear-Down	Take-Down Completed
Α	Saturday, March 25	4:30 pm – 5:00 pm	5:00 pm – 7:00 pm	7:00 pm – 7:15 pm	7:15 pm
В	Sunday, March 26	7:30 am – 8:00 am	8:00 am – 10:00 am	11:30 am – 11:45 am	11:45 am
С	Sunday, March 26	1:30 pm – 2:00 pm	5:00 pm – 7:00 pm	7:00 pm – 7:15 pm	7:15 pm
D	Monday, March 27	7:30 am – 8:00 am	8:00 am – 10:00 am	11:30 am – 11:45 am	11:45 am
E	Monday, March 27	1:30 pm – 2:00 pm	2:30 pm – 4:30 pm	5:30 pm – 5:45 pm	5:45 pm
F	Tuesday, March 28	7:30 am – 8:00 am	8:00 am – 10:00 am	11:45 am - Noon	Noon

^{*} Please note that only scheduled registered poster presenters may enter the exhibit hall during the half hour set-up time. **Note**: Please remove your poster promptly at take down complete time, so that the next presenter may set up their poster.

What's New?

Visit our booth at CNS...

- < 1 ms EEG recovery after TMS pulse
- < 2 ms real-time data access via LSL
- active TMS flat electrodes 32-160 Ch.

BRAIN ISION engineering LIVEAMP

- Ultra-portable EEG amplifier
- Wireless data transmission
- DC, 24-bit, 1000 Hz ADC
- 32 EEG + 8 AUX channels
- active dry/gel or passive electr.

Poster Session A

The effects of attention modulation on sensory processing of spoken words in native-English and native-Polish listeners

Monica Wagner¹, Jungmee Lee², Valerie L Shafer³; ¹St. John University, ²University of Wisconsin, Madison, ³The Graduate Center, City University of New York

Topic Area: ATTENTION: Auditory

Prefrontal and parietal recruitment during the MSIT Poster A2 selective attention task predicts rTMS treatment outcome in patients with subjective tinnitus

George James¹, Jeff Thostenson¹, Ginger Brown¹, Gwendolyn Carter¹, Mark Mennemeier¹; ¹University of Arkansas for Medical Sciences

Topic Area: ATTENTION: Auditory

EEG Evidence of Covert Command Following and Poster A3 the Impact of State Fluctuations in Patients with Severe Brain Injury

William H. Curley¹, Jonathan D. Drover¹, Mary M. Conte¹, Nicholas D. Schiff^{1,2,3}; ¹Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, ²Department of Neurology, Weill Cornell Medicine, NY, ³The Rockefeller University, NY

Topic Area: ATTENTION: Auditory

Poster A4 A resonator model predicts temporal orienting in rhythmic music

Brian K. Hurley¹, Lauren K. Fink¹, Petr Janata¹; ¹University of California,

Topic Area: ATTENTION: Auditory

Poster A5 Neural generators and fast dynamics of the taskrelevant P3a ERP

Lizzy Blundon¹, Lawrence Ward¹; ¹University of British Columbia Topic Area: ATTENTION: Auditory

Poster A6 Predicting attentional failures: the spatiotemporal neural dynamics of attention during sustained dual-task performance.

James Elliott¹, Barry Giesbrecht¹; ¹University of California, Santa Barbara Topic Area: ATTENTION: Nonspatial

Feedback guided learning: prefeedback alpha Poster A7 modulates utilization of outcome information

Berry van den Berg^{1,2}, Benjamin Geib¹, Rene San Martin^{1,3}, Monicque Lorist², Marty Woldorff¹: ¹Duke University, ²University of Groningen, Univ Med Ctr Groningen. The Netherlands. ³Universidad Diego Portales. Santiago, Chile

Topic Area: ATTENTION: Nonspatial

Contributions of the Supplementary Motor Area to the interaction between phasic alerting and conscious perception

Mar Martín-Signes¹, Carlos Pérez-Serrano¹, Ana B. Chica¹; ¹University of Granada

Topic Area: ATTENTION: Nonspatial

Poster A9 Region-specific neural consequences of Biased-Competitional Heterogeneity of the Effects of Attentional Prioritization

Andrew D Sheldon¹, Elyana Saad¹, Bradley R Postle¹; ¹University of Wisconsin, Madison

Topic Area: ATTENTION: Nonspatial

Poster A10 Attentional blink to alcohol cues in binge drinkers versus non-binge drinkers

Francesco DePalma¹, Natalie Ceballos¹, Reiko Graham¹; ¹Texas State University

Topic Area: ATTENTION: Other

Poster A11 The Children's Brain Activation in Discriminating Faces along the Morphed Continuum of Happy and Fearful Expressions

Ming-Chun Lee¹, SHIH-TSENG HUANG¹; ¹Department of Psychology and Center for research in Cognitive Science, National Chung-Cheng University, Taiwan

Topic Area: EMOTION & SOCIAL: Development & aging

Poster A12 The effects of aging on gaze biases for faces

Toshiki Saito¹, Rui Nouchi¹, Hikari Kinjo², Ryuta Kawashima¹; ¹Tohoku University, 2Meiji Gakuin University

Topic Area: EMOTION & SOCIAL: Development & aging

Poster A13 Sexually dimorphic cerebellar findings in children with ADHD

Jina Pakpoor^{1,2}, Deana Crocetti¹, Stewart Mostofsky^{1,2}; ¹Kennedy Krieger Institute, Baltimore, MD, USA, ²Johns Hopkins School of Medicine

Topic Area: EMOTION & SOCIAL: Development & aging

Poster A14 The aging mirror neuron system: EEG activation during biological motion observation

Victoria, E. A. Brunsdon¹, Elisabeth, E. F. Bradford¹, Heather Ferguson¹; ¹University of Kent

Topic Area: EMOTION & SOCIAL: Development & aging

Poster A15 Ponies proliferate positive affect: The effectiveness of equine therapy on positive affect in adolescents with serious emotional disturbances

Hanna Roberts¹, Nikki Honzel¹; ¹Carroll College Topic Area: EMOTION & SOCIAL: Development & aging

Observing model-based control of emotion-Poster A16 triggered attention with steady-state visual evoked potentials

deborah talmi¹, Matthias Wieser, Martina Slapkova: ¹University of Manchester, ²University of Rotterdam, ³University of Manchester Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Stress prior to learning affects resting state functional connectivity and emotional memory at retrieval

Stephanie Sherman¹, Sarah M. Kark¹, Ryan T. Daley¹, Jessica D. Payne², Elizabeth A. Kensinger¹; ¹Boston College, ²University of Notre Dame Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Neural Correlates of Immediate and Long-term Poster A18 Effects of Emotion Regulation: A fMRI Study of Explicit and Implicit **Emotional Suppression**

Yuta Katsumi¹, Florin Dolcos¹, Sanda Dolcos¹; ¹University of Illinois at Urbana-Champaign

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A19 Influence of acute stress throughout the memory cycle on associative memory

Elizabeth Goldfarb¹, Alexa Tompary¹, WenXi Zhou¹, Lila Davachi¹, Elizabeth Phelps^{1,2}; ¹New York University, ²Nathan Kline Institute

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A20 **Brain Mechanisms for Processing Natural Dynamic Facial Expressions of Emotion**

Shih-Tseng T. Huang¹, Yen-Ju Lu¹; ¹Department of Psychology and Center for research in Cognitive Science, National Chung-Cheng University, Taiwan Poster Session 2017 Annual Meeting

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A21 The Association of Skin Conductance Level with Emotional Memory Performance Over Time

Tony Cunningham¹, Elaina Bolinger², Jan Born², Jessica Payne¹; ¹University of Notre Dame, ²University of Tübingen

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A22 Simple arithmetic: Not so simple for highly math anxious individuals

Hyesang Chang¹, Lisa Sprute¹, Erin A. Maloney¹, Sian L. Beilock¹, Marc G. Berman¹; ¹The University of Chicago

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A23 Who Cares About Feelings? An ERP Study of Emotional Face Processing, Psychopathic Traits, and Empathy

Danielle diFilipo^{1,2}, Taylor Valentin², Kayla Talbot², Jill Grose-Fifer^{1,2}; ¹The Graduate Center, City University of New York, ²John Jay College of Criminal Justice, City University of New York

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A24 Seeing what we want to see: Motivation shapes perceptual judgments and category-selective activity in the ventral visual stream

Yuan Chang Leong¹, Brent Hughes², Jamil Zaki¹; ¹Stanford University, ²University of California, Riverside

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A25 Which coping strategies predict better outcomes after a stroke?

Marie-Christine Nizzi¹; ¹Harvard University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A26 Disturbed Emotional Processing in Post-traumatic Stress: Evidence from the Late Positive Potential

Brian Albanese¹, Richard Macatee¹, Nicholas Allan², Edward Bernat³, Norman Schmidt¹; ¹Florida State University, ²Ohio University, ³University of Maryland

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster A27 My rubbery neck: Attentional stickiness for selfrelevant objects

Grace Truong¹, Rebecca M. Todd¹; ¹University of British Columbia Topic Area: EMOTION & SOCIAL: Self perception

Poster A28 A dual piano performance EEG study: the effect of the partner's animacy and melodic content on alpha-band oscillations

Iran Roman¹, Madeline Huberth¹, Nick Gang¹, Tysen Dauer¹, Wisam Reid¹, Chryssie Nanou¹, Matthew Wright¹, Takako Fujioka¹; ¹Stanford University Topic Area: EMOTION & SOCIAL: Self perception

Poster A29 Self-esteem and the brain: structural correlates in the prefrontal cortex

Igor Nenadic^{1,2}, Katharina Frisch¹, Bianca Besteher¹, Robert Spalthoff¹, Christian Gaser^{1,3}; ¹Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany, ²Department of Psychiatry and Psychotherapy, Philipps University Marburg and Marburg University Hospital (UKGM), Marburg, Germany, ³Department of Neurology, Jena University Hospital, Jena, Germany

Topic Area: EMOTION & SOCIAL: Self perception

Poster A30 Neuropsychological Correlates of Self-Kindness on Late Adolescence: Increased Cognitive Flexibility and Emotional Regulation.

Nayara Mota¹, Elenilda Chaves¹, Marina Antunes¹, Vanessa Daudt¹, Rudi Borges¹; ¹University of the State of Rio de Janeiro

Topic Area: EMOTION & SOCIAL: Self perception

Poster A31 Development of the error-monitoring system from ages 9-35: unique insight provided by MRI-constrained source localization of EEG

George A. Buzzell¹, John E. Richards², Lauren K. White³, Daniel S. Pine⁴, Nathan A. Fox¹; ¹University of Maryland, College Park, ²University of South Carolina, ³Children's Hospital of Pennsylvania, ⁴National Institute of Mental Health

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster A32 Functional neural correlates of selective attention deficits in Cerebral Small Vessel Disease: a multi-modal approach to exploring variability in vascular cognitive impairment

Ayan Dey^{1,2,3}, Vessela Stamenova^{2,3}, Alissa Papadopoulos², Laura Oliva², Laryssa Levesque², Gary Turner^{1,4}, Sandra E. Black^{1,2,3,5}, Brian Levine^{1,2,3}; ¹University of Toronto, Canada, ²Rotman Research Institute at Baycrest, Toronto, Canada, ³Canadian Partnership for Stroke Recovery, ⁴York University, Toronto, Canada, ⁵Sunnybrook Health Sciences Center, Toronto, Canada

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster A33 How do relational integration deficits contribute to older adults' associative memory impairments?

Taylor James¹, Audrey Duarte¹; ¹Georgia Institute of Technology Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster A34 Real-time strategy game training effects white matter integrity in older adults

Nicholas Ray¹, Kaoru Nashiro², Margaret O'Connell¹, Shuo Qin¹, Evan Smith¹, Chandramallika Basak¹; ¹University of Texas at Dallas, ²University of Southern California

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster A35 The neuroanatomy of working memory training: A quantitative meta-analysis of fMRI studies

Oshin Vartanian^{1,2}, Vladyslava Replete¹, Quan Lam¹; ¹Defence Research and Development Canada, ²University of Toronto

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A36 Stress Interactions with Working Memory in Adolescence

Alana Campbell^{1,2}, Mae Nicopolis^{1,2}, Louis Murphy¹, Aysenil Belger^{1,2}; ¹University of North Carolina at Chapel Hill, ²Carolina Institute for Developmental Disablities

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A37 Working memory and speech perception: evidence from transcranial magnetic stimulation and brain morphometry

Isabelle Deschamps^{1,2}, Melody Courson^{1,2}, Pascale Tremblay^{1,2}; ¹Faculty of Medicine, Laval University, QC, Canada, ²Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, QC, Canada

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A38 Ventromedial prefrontal cortex plays a critical role in schematic support of short-term memory

Liz Race^{1,2}, Hope Tobin^{1,2}, Mieke Verfaellie^{2,3}; ¹Tufts University, ²VA Boston Healthcare System, ³Boston University School of Medicine Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A39 Neuroimaging, Neurostimulation, and Neuropsychological Evidence for Different States of Representation in Working Memory

Nathan Rose¹, Bradley R Postle²; ¹University of Notre Dame, ²University of Wisconsin-Madison

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A40 Hippocampal Activity Predicts High-resolution Visual Working Memory

Alyssa Borders¹, Andrew Yonelinas¹; ¹University of California, Davis Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A41 Reward's role in memory-based visual search

Daniel Schneider¹, Claudia Bonmassar², Clayton Hickey²; ¹Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, ²Center for Mind/Brain Sciences, University of Trento

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A42 Use-dependent coding for working memory

Nicholas E. Myers¹, Maryann A. P. Noonan¹, Anna C. Nobre¹, Mark G. Stokes¹; ¹University of Oxford

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A43 Evaluating Moderators in the Use of Transcranial Direct Current Stimulation with Working Memory Training

Jacky Au¹, Benjamin Katz³, Sheebani Talati³, Seung-Min Moon¹, Kimberly Bunarjo¹, Benjamin Gibson¹, Martin Buschkuehl², Tessa Abagis³, Chelsea Zabel³, Susanne Jaeggi¹, John Jonides³; ¹University of California, Irvine, ²MIND Research Institute - Irvine, CA, ³University of Michigan, Ann Arbor

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster A44 Sustained Attention and Working Memory Are Improved by Attention Regulation Training with Guided Experiential Skill Application

Sahar M. Yousef¹, Anthony J.-W. Chen^{1,2,3}, Omid Rhezaii¹, Fred Loya^{2,3}, Deborah Binder^{2,3}, Michael A. Silver¹; ¹University of California, Berkeley, ²Veterans Administration Northern California Health Care System, ³University of California, San Francisco

Topic Area: EXECUTIVE PROCESSES: Other

Poster A45 Left-lateralized reading network illustrated by causal effective connectivity

Chotiga Pattamadilok¹, Samuel Planton¹, Deirdre Bolger², Mireille Bonnard³; ¹Aix Marseille Université, CNRS, LPL UMR 7309, 13100, Aix-en-Provence, France, ²Labex Brain and Language Research Institute, ³Aix Marseille Université, Institut de Neurosciences des Systèmes, INSERM, UMR 1106, Marseille. France

Topic Area: LANGUAGE: Other

Poster A46 Subliminal Speech Priming on Emirati verbs: an MEG investigation

Meera AlKaabi¹, Kevin Schluter², Alec Marantz³; ¹United Arab Emirates University, ²New York University Abu Dhabi, ³New York University

Topic Area: LANGUAGE: Other

Poster A47 Code-switching in real time: ERP evidence from habitual bilingual code-switchers

Eleonora Rossi^{1,2}, Megan Zirnstein², Gerrit Jan Kootstra³; ¹California State Polytechnic University, Pomona, ²University of California, Riverside, ³Windesheim University of Applied Sciences

Topic Area: LANGUAGE: Other

Poster A48 Sequence processing and language lateralization

Shuang Geng¹, Qi Su¹, Shuai Wang¹, Xing Tian^{2,3}, Qing Cai^{1,3}; ¹School of Psychology and Cognitive Science, East China Normal University, ²New York University Shanghai, ³NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai

Topic Area: LANGUAGE: Other

Poster A49 Neural decomposition of synergistic and redundant information in interaction between audiovisual speech rhythms and brain oscillations

Hyojin Park¹, Robin A. A. Ince¹, Gregor Thut¹, Joachim Gross¹; ¹Institute of Neuroscience and Psychology, University of Glasgow

Topic Area: LANGUAGE: Other

Poster A50 Evaluating the massed practice and behavioral relevance principles in neurocognitive language therapy

Friedemann Pulvermuller^{1,2}, Benjamin Stahl^{1,3}, Felix Dreyer¹, Guglielmo Lucchese¹, Verena Buscher¹, Bettina Mohr⁴; ¹Brain Language Lab, Freie Universitat Berlin, ²Berlin School of Mind and Brain, Humboldt Universitat zu Berlin, ³Charite Universitatsmedizin, Campus Mitte, Berlin, ⁴Charite Universitatsmediizin, Campus Benjamin Franklin, Berlin

Topic Area: LANGUAGE: Other

Poster A51 Neuroanatomical Correlates of Visuoconstruction in the Primary Progressive Aphasias

Christa Watson¹, Maria Luisa Mandelli¹, Katherine Possin¹, Maria Luisa Gorno-Tempini¹; ¹University of California, San Francisco

Topic Area: LANGUAGE: Other

Poster A52 Multimodal characterization of ventro-occipitotemporal reading regions

Garikoitz Lerma-Usabiaga¹, Manuel Carreiras^{1,2}, Pedro M. Paz-Alonso¹; ¹BCBL. Basque Center on Cognition, Brain and Language., ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

Topic Area: LANGUAGE: Other

Poster A53 Abnormal Speech Feedback Processing in Individuals with 16p11.2 Deletions

Carly Demopoulos¹, Hardik Kothare¹, Danielle Mizuiri¹, Jennifer Henderson-Sabes¹, Brieana Fregeau¹, Jennifer Tiernagel², Elliott Sherr¹, John Houde¹, Srikantan Nagarajan¹; ¹University of California-San Francisco, ²Simons Foundation Autism Research Initiative

Topic Area: LANGUAGE: Other

Poster A54 Electrophysiological Correlates of Crowding in the Perception of Letters and Symbols

Kurt Winsler¹, Phillip Holcomb¹, Katherine Midgley¹, Jonathan Grainger²; ¹San Diego State University, ²CNRS & Aix-Marseille University

Topic Area: LANGUAGE: Other

Poster A55 Variables distinguishing school age children with autism who are held back in school compared to children with autism who are not held back

Talent V. Dang^{1,2}, Philip Lai³; ¹The Salk Institute for Biological Studies, ²University of California, San Diego, ³University of Wisconsin

Topic Area: LANGUAGE: Other

Poster A56 Decoding Linguistic Structure Building in the Time-Frequency Domain

Phillip M. Alday¹, Andrea E. Martin^{2,3}; ¹University of South Australia, ²Max Planck Institute for Psycholinguistics, ³University of Edinburgh

Topic Area: LANGUAGE: Other

Poster A57 Modeling the minds of co-listeners during language comprehension: an ERP study.

Olessia Jouravlev¹, Dima Ayyash¹, Zach Mineroff¹, Evelina Fedorenko^{1,2,3};

¹Massachusetts Institute of Technology, ²Harvard Medical School,

³Massachusetts General Hospital

Topic Area: LANGUAGE: Other

Poster A58 Working Memory and Cognitive Control Modulate Effects of Speaker Reliability on Predictive Processing during Comprehension

Shruti Dave¹, Trevor Brothers¹, Matthew Traxler¹, Tamara Swaab¹; ¹University of California, Davis

Topic Area: LANGUAGE: Semantic

Poster A59 First Language Proficiency Modulates Individual Differences in Semantic Processing: An MEG Study.

Morgan B. Johnson¹, Lisa J. Beck¹, Lyam Bailey¹, Tim Bardouille^{1,2}, Aaron J. Newman¹; ¹Dalhousie University, ²BIOTIC, IWK Health Centre and Capital District Health Authority

Topic Area: LANGUAGE: Semantic

Poster A60 Time-course of motor involvement in literal and metaphoric action sentence processing: A TMS study

Megan Reilly¹, Olivia Howerton¹, Rutvik Desai¹; ¹University of South Carolina Topic Area: LANGUAGE: Semantic

Poster A61 Smaller N400 Amplitudes are Reflected in Creative Individuals

Kristina Pfeifer¹, Gavin Dowd², Reza Ghafur², Alejandro Heredia², Mark W. Geisler²; ¹San Francisco State University

Topic Area: LANGUAGE: Semantic

Poster A62 A neurobiologically inspired computational model of sensorimotor grounding of abstract semantics

Malte R Schomers^{1,2}, Friedemann Pulvermüller^{1,2}; ¹Brain Language Laboratory, Freie Universität Berlin, Germany, ²Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany

Topic Area: LANGUAGE: Semantic

Poster A63 Verbal labelling of tactile percepts increases connectivity between somatosensory and auditory cortices

Tally McCormick Miller^{1,3}, Timo Torsten Schmidt^{2,4}, Felix Blankenburg^{2,3}, Friedemann Pulvermüller^{1,3}; ¹Brain Language Laboratory, Freie Universität Berlin, ²Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, ³Berlin School of Mind and Brain, Humboldt Universität Berlin, ⁴Institute of Cognitive Science, Universität Osnabrück, Germany

Topic Area: LANGUAGE: Semantic

Poster A64 Processing of up/down words recruits cortical oculomotor areas

Markus Ostarek^{1,2}, Jeroen van Paridon^{1,2}, Samuel Evans³, Falk Huettig^{1,4};
¹Max Planck Institute for Psycholinguistics, Nijmegen, ²International Max
Planck Research School for Language Sciences, ³Institute of Cognitive
Neuroscience, University College London, ⁴Donders Institute for Brain,
Cognition, and Behavior, Radboud University, Nijmegen

Topic Area: LANGUAGE: Semantic

Poster A65 Visual gender cue effects on incremental language comprehension

Alba Rodriguez^{1,3}, Yoana Vergilova², Matthew W Crocker², Pia Knoeferle¹;

¹Humboldt University Berlin,

²Saarland University, Germany,

³Bielefeld University. Germany

Topic Area: LANGUAGE: Semantic

Poster A66 Influence of Speakers' Gaze on Listeners' Comprehension: Evidence from Event Related Potentials (ERP)

Torsten Kai Jachmann¹, Heiner Drenhaus¹, Maria Staudte¹, Matthew W. Crocker¹: ¹Saarland University, Germany

Topic Area: LANGUAGE: Semantic

Poster A67 Evidence for Right Hemisphere Role in Semantic Exemplar Generation

Alessandra Macbeth¹, Adam Felton¹, Christine Chiarello¹; ¹University of California, Riverside

Topic Area: LANGUAGE: Semantic

Poster A68 Effects of Text Difficulty during Natural Reading: A co-registered eye tracking and fMRI study

Wonil Choi¹, Matthew Lowder², John Henderson²; ¹GIST College, ²Center for Mind and Brain, University of California, Davis

Topic Area: LANGUAGE: Semantic

Poster A69 Speaker-specific predictions about category membership during language comprehension

Rachel Ryskin^{1,2}, Shukhan Ng³, Katie Mimnaugh³, Sarah Brown-Schmidt⁴, Kara D. Federmeier³,5; ¹Massachusetts Institute of Technology, ²Boston University, ³University of Illinois at Urbana-Champaign, ⁴Vanderbilt University, ⁵Beckman Institute for Advanced Science and Technology

Topic Area: LANGUAGE: Semantic

Poster A70 Examination of the relationship between resting state neural oscillations and lexical semantic retrieval in mild traumatic brain injury

Marissa DeCaro¹, Amy Ramage¹, Stephanie Barlow¹, Daniel Seichepine², Robert Ross¹; ¹University of New Hampshire, ²University of New Hampshire-Manchester

Topic Area: LANGUAGE: Semantic

Poster A71 Accessing Script Knowledge: The Case Of Emotion

Katharina Menn¹, Dorothee J. Chwilla¹; ¹Donders Institute for Brain, Cognition, and Behaviour, Radboud University

Topic Area: LANGUAGE: Semantic

Poster A72 N400 Effects on Conceptual Expansion

Alejandro Heredia Cedillo¹, Kristina Pfeifer¹, Gavin Dowd¹, Reza Ghafur¹, Mark W. Geisler¹; ¹San Francisco State University

Topic Area: LANGUAGE: Semantic

Poster A73 Prototype representations in ventromedial prefrontal cortex and hippocampus during concept generalization

Caitlin Bowman¹, Dagmar Zeithamova¹; ¹University of Oregon

Topic Area: LONG-TERM MEMORY: Episodic

Poster A74 Patterns of Alpha-band Oscillations Track Spatial Long Term Memory Performance

David Sutterer¹, Joshua Foster¹, John Serences², Edward Vogel¹, Edward Awh¹; ¹University of Chicago, ²University of California - San Diego

Topic Area: LONG-TERM MEMORY: Episodic

Poster A75 Detecting neural correlates of autobiographical memory for recent and remote memories through high-resolution fMRI

Farah Naaz¹, Lindsay K. Knight¹, Brooke N. Siers¹, Brendan E. Depue¹; ¹University of Louisville

Topic Area: LONG-TERM MEMORY: Episodic

The Role of the Posterior Parietal Cortex in Poster A76 **Episodic Retrieval**

Marty Fiati¹, Peter Bright¹; ¹Anglia Ruskin University Topic Area: LONG-TERM MEMORY: Episodic

Neural correlates of preparation during context memory encoding in young and older adults

Jonathan Strunk¹, Audrey Duarte¹; ¹Georgia Institute of Technology

Topic Area: LONG-TERM MEMORY: Episodic

Poster A78 EEG oscillations and value-based recognition memory

Blake Elliott¹, Chris Blais¹, Gene Brewer¹; ¹Arizona State University Topic Area: LONG-TERM MEMORY: Episodic

Altered hippocampal-prefrontal oscillatory Poster A79 dynamics coordinating memory binding in two cases of developmental amnesia

Nicholas B. Diamond^{1,2}, Rosanna K. Olsen², Jennifer D. Ryan^{1,2}; ¹University of Toronto, ²Rotman Research Institute, Baycrest Health Sciences

Topic Area: LONG-TERM MEMORY: Episodic

Neural similarity patterns across repeated memory Poster A80 encoding are further influenced by the modality in which stimuli are presented

Carolin Sievers¹, Fraser W. Smith¹, Louis Renoult¹; ¹University of East Anglia, UK

Topic Area: LONG-TERM MEMORY: Episodic

Poster A81 Hippocampal forgetting signals: the case of prior knowledge consistency

Niv Reggev¹, Talya Sadeh², Oded Bein³, Anat Maril⁴; ¹Harvard University, ²Ben Gurion University of the Negev, ³New York University, ⁴Hebrew University of Jerusalem

Topic Area: LONG-TERM MEMORY: Episodic

The effect of shared distinctiveness on source Poster A82 memory and illusory correlations: An event-related potential study

Michael Weigl¹, Hong Hanh Pham¹, Axel Mecklinger¹, Timm Rosburg^{1,2}; ¹Saarland University, ²University Psychiatric Clinics Basel

Topic Area: LONG-TERM MEMORY: Episodic

Self-referential memory and rest activity within the posteromedial cortex originate from different neuronal populations

Amy Daitch¹, Josef Parvizi¹; ¹Stanford University Topic Area: LONG-TERM MEMORY: Episodic

Poster A84 Hippocampus is necessarily involved in recollection memory precision

Aneesha S Nilakantan¹, Donna J Bridge¹, John A Walker¹, Stephen A VanHaerents¹, Joel L Voss¹; ¹Northwestern University Feinberg School of

Topic Area: LONG-TERM MEMORY: Episodic

Sensory stimulation during sleep to selectively Poster A85 strengthen memories: Sounds can be arbitrarily associated with visuospatial learning

Larry Cheng¹, James Antony², Paula Pacheco², Ken Norman², Ken Paller¹; ¹Northwestern University, ²Princeton University

Topic Area: LONG-TERM MEMORY: Episodic

Poster A86 Rhythmic enhancement of visual long-term memory

Hunter A. Johndro¹, Lauren Jacobs¹, Aniruddh D. Patel¹, Elizabeth Race¹; ¹Tufts University

Topic Area: LONG-TERM MEMORY: Episodic

Poster A87 Frequency dependence of noninvasive brain stimulation effects on hippocampal-cortical networks

Molly S. Hermiller¹, Zainab Fatima¹, Jonathan O'Neil¹, Robert Palumbo¹, Stephen VanHaerents¹, Tommi Raij^{1,2}, Donna Bridge¹, Joel L. Voss¹; ¹Northwestern University Feinberg School of Medicine, ²Rehabilitation Institute of Chicago

Topic Area: LONG-TERM MEMORY: Episodic

Poster A88 Predicting Individual Differences in Learning and Memory By Measuring Limbic White Matter

Athanasia Metoki¹, Kylie H. Alm¹, Yin Wang¹, Ingrid R. Olson¹; ¹Temple University, Department of Psychology

Topic Area: LONG-TERM MEMORY: Episodic

A Sad Mood Prior to Sleep is Sufficient to Enhance Poster A89 Sleep-Dependent Consolidation of Sad Memories

Mckensey Johnson¹, Holly Bowman¹, Gretta Johnson¹, Israh U. Imam¹, Anjelica E. Langdon¹, Carmen E. Westerberg¹; ¹Texas State University Topic Area: LONG-TERM MEMORY: Episodic

Poster A90 Structure-Function Correlates of Successful Associative Encoding - A Multimodal Imaging Approach.

Nina Becker^{1,2}, Grégoria Kalpouzos², Alireza Salami², Erika J. Laukka², Yvonne Brehmer^{1,2}; ¹Otto Hahn Group on Associative Memory, Max Planck Institute for Human Development, Berlin, Germany, ²Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden

Topic Area: LONG-TERM MEMORY: Episodic

Poster A91 Changes in Item Representations Following **Category Learning**

Stefania Ashby¹, Caitlin Bowman¹, Dagmar Zeithamova¹; ¹University of

Topic Area: LONG-TERM MEMORY: Episodic

Poster A92 Schema-related predictions and their violations in episodic memory

Darya Frank¹, Daniela Montaldi¹, Bianca Wittmann², Deborah Talmi¹; ¹University of Manchester, ²University of Giessen

Topic Area: LONG-TERM MEMORY: Episodic

Poster A93 Galectin-3 is a novel negative regulator of memory formation

Hsiao-Yuan Lee^{1,2}, Yan-Chu Chen², Yun-Li Ma¹, Cheng-Hsiung Lin¹, Wei-Lun Hsu¹; ¹Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 115, ²Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114

Topic Area: LONG-TERM MEMORY: Other

Poster A94 Age Related Changes in Neural Noise in the **Default Mode Network**

Nicole Dosamantes¹, Jorge Yanar¹, Lorri Kais¹, Hannah Walker¹, Mark Albert¹, Robert G Morrison¹; ¹Loyola University Chicago

Topic Area: METHODS: Electrophysiology

Alpha-frequency transcranial alternating current Poster A95 stimulation (tACS) induces plastic increases in posterior-frontal network connectivity

Kevin Clancy¹, Sarah Baisley¹, Nika Kartvelishvili¹, Mingzhou Ding², Wen Li¹; ¹Florida State University, ²University of Florida - Gainesville

Poster Session 2017 Annual Meeting

Topic Area: METHODS: Electrophysiology

Poster A96 Novel characterization of an architecturally distinct sleep stage and its implications for recovery from the minimally conscious state

Jackie L. Gottshall^{1,2}. Zoe M. Adams¹. Peter B. Forgacs^{1,3,5}. Tanya J. Nauvel^{1,4}, Nicholas D. Schiff^{1,3,5}; ¹Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, ²Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, NY, 3Department of Neurology, Weill Cornell Medicine, NY, 4Computational Biology and Medicine Program, Weill Cornell Graduate School of Medical Sciences, NY, 5The Rockefeller University, NY

Topic Area: METHODS: Electrophysiology

Poster A97 Age Related Changes in Neural Noise During **Cognitive Control**

Jorge Yanar¹, Nicole Dosamantes¹, Lorri Kais¹, Hannah Walker¹, Mark Albert¹, Robert G Morrison¹; ¹Loyola University Chicago

Topic Area: METHODS: Electrophysiology

Cross-Frequency Coupling as a Biomarker of Poster A98 **Human Cognitive Functions**

Maria Mikail¹, Reza Zomorrodi^{2,3}, Zafiris J. Daskalakis^{2,3,4}, Tarek K. Rajj^{2,3,4}; ¹Royal College of Surgeons, Dublin, Ireland, ²Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada, ³Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, Canada, ⁴Department of Psychiatry, University of Toronto, Toronto. Canada

Topic Area: METHODS: Electrophysiology

A statistical method for analyzing and comparing Poster A99 spatiotemporal cortical activation patterns

Patrick Krauss¹, Achim Schilling¹, Claus Metzner¹, Konstantin Tziridis¹, Holger Schulze¹; ¹University of Erlangen

Topic Area: METHODS: Electrophysiology

A novel paradigm for rapid and simultaneous Poster A100 evaluation of auditory and visual pathways

Andrew S. Kessler¹, Kristina C. Backer¹, Laurel A. Lawyer¹, Sharon Coffey-Corina¹, David P. Corina¹, Lee M. Miller¹; ¹University of California, Davis Topic Area: METHODS: Electrophysiology

Emerging EEG/ERP Methods: New Potential for Poster A101 **Tobacco Science**

Mauricio Rangel-Gomez¹, Raul Cruz-Cano¹, Pamela Clark¹, Edward Bernat²; ¹School of Public Health, University of Maryland, College Park, ²Department of Psychology, University of Maryland, College Park

Topic Area: METHODS: Electrophysiology

Poster A102 **Distinct Neural Mechanisms for Correcting** Increases and Decreases in Asynchrony During Sensorimotor **Synchronization**

Kelly Jantzen¹, Rachel Walls¹, McKaila Leytze¹, Elisabeth Amir-Brownstein¹, Andrew Jaye¹, Kathleen Lucier¹, Sarah Martinez¹, McNeel Jantzen¹; ¹Western Washington University

Topic Area: PERCEPTION & ACTION: Motor control

Poster A103 Motor evoked potentials reflect changes in rapid inhibitory control during serial ordering

Lawrence P Behmer Jr.1, Matthew J C Crump1, K J Jantzen2, Sarah Martinez², Rachel Walls², Elisabeth Amir-Brownstein², Andrew Jaye², Mckaila Leytze², Kathleen Lucier²; ¹Brooklyn College of CUNY, ²Western Washington University

Topic Area: PERCEPTION & ACTION: Motor control

Poster A104 Cognitive interference modulates speech acoustics in a vowel-modified Stroop task

Caroline Niziolek¹, Ian Quillen¹, Kimberly Lin¹, Sara Beach², Swathi Kiran¹; ¹Boston University, ²Harvard Medical School

Topic Area: PERCEPTION & ACTION: Motor control

Poster A105 Response Inhibition Deficits Are Associated with Disrupted Intrinsic Connectivity of the Motor Network after Pediatric Traumatic Brain Injury

Jaclyn Stephens^{1,2}, Cindy Salorio^{1,2}, Mary Beth Nebel^{1,2}, Stewart Mostofsky^{1,2}, Stacy Suskauer^{1,2}; ¹Kennedy Krieger Institute, ²Johns Hopkins School of Medicine

Topic Area: PERCEPTION & ACTION: Motor control

Poster A106 Touchscreen-based speech production without vocal tract sensory feedback

Megan Thompson¹, John Houde², Hardik Kothare², Srikantan Nagarajan²; ¹UC Berkeley-UC San Francisco Joint Graduate Group in Bioengineering, ²UCSF Biomagnetic Imaging Laboratory

Topic Area: PERCEPTION & ACTION: Motor control

Poster A107 A Causal Study of the Role of Motor Planning in **Musical Beat Perception**

Jessica Ross¹, John Iversen², Ramesh Balasubramaniam¹; ¹University of California, Merced, ²University of California, San Diego Topic Area: PERCEPTION & ACTION: Motor control

Sensorimotor adaptation to real-time formant Poster A108 shifts is influenced by the direction and magnitude of shift.

Hardik Kothare¹, Vikram Ramanarayanan², Benjamin Parrell³, Srikantan Nagarajan¹, John Houde¹; ¹University of California, San Francisco, ²Educational Testing Service R&D, ³University of Delaware

Topic Area: PERCEPTION & ACTION: Motor control

The effect of deep brain stimulation of the Poster A109 subthalamic nucleus in Parkinson's disease on perceptual decisionmaking as a function of task difficulty and speed-accuracy instructions

Yu-Ting Huang¹, Saryah Alhejazi¹, Artem Bunchuk¹, Dilan Athauda^{1,2}, Marwan Hariz^{1,2}, Ludvic Zrinzo², Tom Foltynie^{1,2}, Patricia Limousin^{1,2}, Maarten Speekenbrink¹, Marjan Jahanshahi¹; ¹University College London, ²National Hospital for Neurology and Neurosurgery

Topic Area: PERCEPTION & ACTION: Motor control

Poster A110 Have a little faith in ... your predictions: The development of confidence with proficiency in a time-estimation task insights from feedback-related brain potentials

Romy Frömer¹, Werner Sommer¹, Birgit Stürmer², Nick Yeung³; ¹Humboldt-Universität zu Berlin, ²International Psychoanalytic University, ³University of

Topic Area: PERCEPTION & ACTION: Motor control

Poster A111 Neural correlates of aesthetic ratings of calligraphic characters and scenery photos in experts and novices of Chinese calligraphy.

Denise H. Wu¹, Makayla S. Chen¹, Teresa K. Pegors², Daisy L. Hung^{1,3}, Ovid J.-L. Tzeng^{3,4}; ¹National Central University, Taiwan, ²Azusa Pacific University, USA, ³Taipei Medical University, Taiwan, ⁴National Chiao Tung University, Taiwan

Topic Area: PERCEPTION & ACTION: Vision

On events and features: An ERP study on Poster A112 sequence effects in a choice/nogo Simon task

Edmund Wascher¹, Katharina Hoppe¹; ¹IfADo - Leibniz Research Centre for Working Environment and Human Factors

Topic Area: PERCEPTION & ACTION: Vision

Poster A113 Atypical laterality in visual sensory activation and interhemispheric transfer in Autism Spectrum Disorders

Yukari Takarae¹, Won Suk Song¹, Clifford Saron²; ¹Center for Autism and Developmental Disabilities, UT Southwestern, ²Center for Mind and Brain and M.I.N.D. Institute. UC Davis

Topic Area: PERCEPTION & ACTION: Vision

Aesthetic appreciation of cultural artifacts engages additional processes beyond a core domain-general system

Edward Vessel¹, Ilkay Isik¹, Amy Belfi², Jonathan Stahl³, G. Gabrielle Starr²; ¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany, ²New York University, New York, NY, ³Ohio State University, Columbus, OH Topic Area: PERCEPTION & ACTION: Vision

Poster A115 Interplay between early visual sensory processing impairments and glutathione dysregulation in early-phase psychosis.

Chrysa Retsa¹, Jean-François Knebel^{1,2}, Carina Ferrari³, Raoul Jenni³, Margot Fournier³, Michel Cuenod³, Stephanie Clarke¹, Philippe Conus⁴, Kim Q. Do³, Micah M. Murray^{1,2,5,6}; ¹The Laboratory for Investigative Neurophysiology (The LINE), Lausanne University Hospital (CHUV), Lausanne, Switzerland, ²The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Switzerland, ³Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland, ⁴Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland, 5Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA, 6Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA

Topic Area: PERCEPTION & ACTION: Vision

Behavioral Oscillations in Perceptual Organization Poster A116

Gideon Caplovitz¹, Gennady Erlikhman¹; ¹Department of Psychology, University of Nevada Reno

Topic Area: PERCEPTION & ACTION: Vision

Poster A117 Magnocellular-parvocellular pathway reciprocity in visual processing and the trait-like set point modulated by anxiety

Yuqi You¹, Wen Li¹; ¹Florida State University Topic Area: PERCEPTION & ACTION: Vision

Dissociating neural activity related to subjective visibility and objective performance with simultaneous EEG/fMRI

Jason Samaha¹, Joshua LaRocque¹, Olivia Gosseries¹, Giulio Tononi¹, Bradley Postle¹; ¹University of Wisconsin-Madison

Topic Area: PERCEPTION & ACTION: Vision

Individualized alpha-band rTMS to the inferior frontal junction selectively enhances visual search performance

Bruce Luber¹, Greg Appelbaum², Lysianne Beynel², Sara H Lisanby¹; ¹National Institute of Mental Health, ²Duke University

Topic Area: PERCEPTION & ACTION: Vision

Evaluation of the N1 as an Electrophysiological Marker of Surround Suppression in Healthy Adults

Lisa Levinson¹, Lauren C. Shuffrey^{1,2,3,4}, Heather L Green¹, Dayna Moya Sepulveda¹, Grace Pak¹, Alexis Becerra¹, Karen Froud¹; ¹Teachers College, Columbia University, ²Columbia University Medical Center, ³New York State Psychiatric Institute, ⁴Center for Autism and the Developing Brain

Topic Area: PERCEPTION & ACTION: Vision

Poster A121 **Tracking the Time Course of Visual Prediction:** Graded Effects of Preactivation Shift Earlier Given Extended Preview

Cybelle Smith¹, Kara D. Federmeier¹; ¹University of Illinois, Urbana-Champaign

Topic Area: LONG-TERM MEMORY: Priming

Poster A122 Vocabulary learning benefits from REM after slowwave sleep

Laura Batterink¹, Carmen Westerberg², Ken Paller¹; ¹Northwestern University, 2Texas State University

Topic Area: LONG-TERM MEMORY: Semantic

Poster A123 Becoming a Martian archeologist: Motor interference affects conceptual judgments of learned vs. unlearned tools

Heath Matheson¹, Sharon L. Thompson-Schill¹; ¹Department of Psychology, University of Pennsylvania

Topic Area: LONG-TERM MEMORY: Semantic

Poster A124 **Neural Correlates for Trait Memory Differences**

Marc N Coutanche¹, Griffin Koch¹; ¹University of Pittsburgh

Topic Area: LONG-TERM MEMORY: Semantic

Influence of confirmed and violated expectations Poster A125 on recognition confidence in a semantic retrieval task

Alexandra M. Gaynor¹, Elizabeth F. Chua^{1,2}; ¹The Graduate Center, The City University of New York, ²Brooklyn College, The City University of New York Topic Area: LONG-TERM MEMORY: Semantic

Poster A126 Using ERPs to Dissociate the Neurocognitive Processes Underlying Knowledge Extension through Memory Integration in Adults

Nicole L. Varga¹, Patricia J. Bauer¹; ¹Emory University Topic Area: LONG-TERM MEMORY: Semantic

Poster A127 Abstract representations of object directed action in the left inferior parietal lobule

Quanjing Chen¹, Frank E. Garcea¹, Robert A. Jacobs¹, Bradford Z. Mahon¹; ¹University of Rochester

Topic Area: LONG-TERM MEMORY: Semantic

Poster A128 Memantine's Effects on the Reconsolidation of **Long-term Methamphetamine Associated Memories**

Michael Hanna¹, Paige Braden¹, Brittanie Clarke¹, Hunter Goehring¹; ¹Vanguard University

Topic Area: LONG-TERM MEMORY: Semantic

Poster A129 The concreteness effect from memory illusions' perspective: The HA-DIM Effect

Alejandro Marin-Gutierrez¹, Emiliano Diez Villoria², Angel Fernandez Ramos²; ¹Universidad de La Sabana, ²Universidad de Salamanca- INICO Topic Area: LONG-TERM MEMORY: Semantic

Poster A130 Lateralization in Superior Temporal Sulcus Animal Representations: Motion and Social-Interactive Roles

nadeem dabbakeh¹, Tyler Davis¹; ¹Texas Tech University

Topic Area: LONG-TERM MEMORY: Semantic

Busyness and brain structure: Middle-aged adults show strongest relationship between busyness and cortical thickness Sara B. Festini¹, Xi Chen¹, Denise C. Park¹; ¹University of Texas at Dallas

Topic Area: OTHER

Poster A132 Group-to-individual (G2i) inferences in neuropsychological expert testimony: How the legal system understands averaged brain data

Valerie Hardcastle¹, MK Kitzmiller¹, Shelby Lahey¹; ¹University of Cincinnati Topic Area: OTHER

Poster Session 2017 Annual Meeting

Poster A133 Primary Learning and Secondary Learning are reciprocally woven to develop human intelligence

Rose Ru-Whui Lee^{1,2}, Daisy Lan Hung³, Ovid Jyh-Lang Tzeng^{1,2,4}; ¹National Taiwan Normal University, ²Academia Sinica, ³Taipei Medical University, ⁴National Chiao Tung University

Topic Area: OTHER

Poster A134 Intraparietal sulcus codes for auditory quantities

Shipra Kanjilia¹, Lisa Feigenson¹, Marina Bedny¹; ¹Johns Hopkins University Topic Area: OTHER

Poster A135 Levels of Mental Construal Involved in Processing Abstract and Representational Art

Celia Durkin¹, Eileen Hartnett², Eric Kandel³, Daphna Shohamy⁴; ¹University of California, San Diego, ²Columbia University, ³Columbia University, ⁴Columbia University

Topic Area: OTHER

Poster A136 Automated meta-analysis of event-related potentials and their correlates through text-mining

Thomas Donoghue¹, Bradley Voytek¹; ¹University of California, San Diego Topic Area: OTHER

Poster A137 Older adults at-risk for developing MCI show changes in brain signal complexity: A multiscale entropy analysis

Joshua W. Villafuerte^{1,2}, Rachel N. Newsome^{1,2}, Sarah M. Carpentier^{1,2}, Morgan D. Barense^{1,2}, Jennifer D. Ryan^{1,2}, Cheryl L. Grady^{1,2}; ¹University of Toronto, ²Rotman Research Institute at Baycrest

Topic Area: OTHER

Poster A138 Are there ripple effects from focal brain lesions to intact neural tissue?

Yuan Tao¹, Jeremy Purcell¹, Brenda Rapp¹; ¹Johns Hopkins University Topic Area: OTHER

Poster A139 Transcriptome analysis identifies blood biomarkers in the middle cerebral artery occlusion non-human stroke model

Sung S. Choi¹, Eui-Jin Lee², Sang-Hoon Cha³, Sang-Rae Lee⁴, Kyung Sik Yi³, Da H. Kim¹, So H. Kim¹, Joo L. Park¹, Youngjeon Lee⁴, Kyu-Tae Chang⁴, Hong J. Lee¹; ¹Biomedical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea, ²Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea, ³Department of Radiology, Chungbuk National University Hospital, Chungbuk, Republic of Korea, ⁴National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju, Chungbuk, Korea

Topic Area: OTHER

Poster Session B

Poster B1 Cardiac Measures of Autonomic Arousal are Associated with ERP Measures of Selective Attention in Children and Adults

Ryan Giuliano¹, Christina Karns¹, Theodore Bell¹, Leslie Roos¹, Seth Petersen¹, Elizabeth Skowron¹, Helen Neville¹, Eric Pakulak¹; ¹University of Oregon

Topic Area: ATTENTION: Auditory

Poster B2 Attention sharpens prediction error, prediction determines behavior

Alessandro Tavano¹, David Poeppel^{1,2}; ¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, ²New York University

Topic Area: ATTENTION: Auditory

Poster B3 Spectral analysis of passive listening EEG paradigms reveals consistent patterns of activation in severely brainingured patients

Zoe M. Adams¹, William H. Curley¹, Mary M. Conte¹, Nicholas D. Schiff^{1,2,3}; ¹Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, ²Department of Neurology, Weill Cornell Medicine, NY, ³The Rockefeller University, NY

Topic Area: ATTENTION: Auditory

Poster B4 Long-term memory guides auditory spatial attention: An event-related potential study

Jacqueline Zimmermann^{1,2}, Claude Alain^{1,2}, Morris Moscovitch^{1,2}; ¹University of Toronto, ²Rotman Research Institute, Baycrest

Topic Area: ATTENTION: Auditory

Poster B5 The effects of 24-hour sleep deprivation on ERP indices of selective attention and working memory

Malayka Mottarella¹, Eve Wiggins¹, Seth Eggleston¹, Kendra Good¹, Ryan Giuliano², Courtney Stevens¹; ¹Willamette University, ²University of Oregon Topic Area: ATTENTION: Auditory

Poster B6 A Mobile Cognition Approach To Attention: Exploring Modulations Of P300 Event-Related Potentials In The Real-World

Simon Ladouce¹, David I. Donaldson¹, Paul Dudchenko¹, Magdalena letswaart¹; ¹University of Stirling, Scotland (UK)

Topic Area: ATTENTION: Auditory

Poster B7 Temporal Expectation Weights Visual Signals Over Auditory Signals

Marcia Grabowecky¹, Melisa Menceloglu¹, Satoru Suzuki¹; ¹Northwestern University

Topic Area: ATTENTION: Multisensory

Poster B8 Attention to detail predicts adaptation to statistics of sensory environment

Jennifer K. Toulmin¹, Ryan A. Stevenson^{2,3}, Ariana Youm¹, Samantha Schulz^{2,3}, Morgan D. Barense^{1,4}, Susanne Ferber^{1,4}; ¹University of Toronto, ²Western University, ³Brain and Mind Institute, ⁴Rotman Research Institute at Baycrest

Topic Area: ATTENTION: Multisensory

Poster B9 Task instruction modulates alpha band eventrelated spectral perturbation to ambiguously located auditory stimuli

Daniel M. Roberts¹, Craig G. McDonald¹, Carryl L. Baldwin¹; ¹George Mason University

Topic Area: ATTENTION: Multisensory

Poster B10 An attentional mechanism for minimizing crossmodal distraction

Lauren Grant¹, Daniel Weissman¹; ¹University of Michigan Topic Area: ATTENTION: Multisensory

Poster B11 The effects of cross-modal processing on attentional asymmetries during visual search in right-hemispheric patients with and without neglect

Rebecca E. Paladini¹, Sonja Kesselring¹, Julia Frey^{1,2}, Flurin Feuerstein¹, Urs P. Mosimann^{1,4}, Tobias Nef¹, Thomas Nyffeler^{1,2}, René M. Müri^{1,3}, Dario Cazzoli¹; ¹University of Bern, Bern, Switzerland, ²Luzerner Kantonsspital, Luzern, Switzerland, ³Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland, ⁴Private Hospital Wyss, Münchenbuchsee, Switzerland

Topic Area: ATTENTION: Multisensory

Poster B12 Spatial attentional asymmetries in a cross-modal visual search task and the role of the frontal eye field

Dario Cazzoli¹, Rebecca E. Paladini¹, Lorenzo Diana¹, Giuseppe Zito², Urs P. Mosimann¹,³, Thomas Nyffeler¹,⁴, René M. Müri¹,⁵, Tobias Nef¹; ¹University of Bern, Bern, Switzerland, ²Imperial College, London, United Kingdom, ³Private Hospital Wyss, Münchenbuchsee, Switzerland, ⁴Luzerner Kantonsspital, Luzern, Switzerland, ⁵Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland

Topic Area: ATTENTION: Multisensory

Poster B13 Dissociations between neural responses to external visual and auditory stimuli as a result of internal visual and auditory mind-wandering

Sophie Forster¹, Charlotte Kemp¹, Giulia Poerio², Ben Dyson¹; ¹University of Sussex. UK, ²University of York, UK

Topic Area: ATTENTION: Multisensory

Poster B14 Effects of acute stress on intertemporal choice and altruism in younger and older adults

Erika P. Sparrow¹, Bonnie A. Armstrong¹, Julia Spaniol¹; ¹Ryerson University Topic Area: EMOTION & SOCIAL: Development & aging

Poster B15 Interoceptive sensitivity is associated with affect, personality, and memory in older adults

Marcus Haustein¹, Natalie Denburg¹; ¹University of Iowa Topic Area: EMOTION & SOCIAL: Development & aging

Poster B16 The effects of aging on false-belief reasoning abilities: an EEG study with older and younger adults

Elisabeth E.F. Bradford¹, Victoria E.A. Brunsdon¹, Heather Ferguson¹; ¹University of Kent, U.K.

Topic Area: EMOTION & SOCIAL: Development & aging

Poster B17 Structural Connectivity between the Left Basal Ganglia and Left Insula Predicts Initiation of Substance Use in Adolescence

Kelly C. Martin¹, Katherine O'Connell², Valerie L. Darcey^{1,2}, Emma J. Rose³, Diana H. Fishbein³, John W. VanMeter¹; ¹Georgetown University, Center for Functional and Molecular Imaging, Washington, DC, ²Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC, ³The Pennsylvania State University. University Park, PA

Topic Area: EMOTION & SOCIAL: Development & aging

POSTER B18 STRESS-MEDIATED ALTERATIONS OF AMYGDALAR ACTIVATION AND CORTICAL NETWORK COHERENCE ASSOCIATED WITH SEROTONIN TRANSPORTER POLYMORPHISMS

David Beversdorf¹, Neetu Nair¹, John Hegarty^{1,2}, Katherine Lane¹, Bradley Ferguson¹, Patrick Hecht¹, Michael Tilley³, Jeffrey Johnson¹, Shawn Christ¹; ¹University of Missouri, ²Stanford University, ³Central Methodist University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B19 Everyday moral reasoning: the role that persons play in the neural processing of social and non-social events that elicit gratitude or distress

Christina Karns¹; ¹University of Oregon

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B20 Early frontal responses to emotional valence in an Affective Go-NoGo task: Theta-band changes in ventral ACC

Mario Liotti¹, Killian Kleffner¹, Ashley C Livingstone¹, Megan Liau¹; ¹Simon Fraser University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B21 Anodal Transcranial Direct Current Stimulation over Right Dorsolateral Prefrontal Cortex Alters Decision Making During Approach-Avoidance Conflict

Evangelia G. Chrysikou¹, Claire Gorey², Robin L. Aupperle^{3,4}; ¹University of Kansas, ²University of South Florida, ³Laureate Institute for Brain Research, ⁴University of Tulsa

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B22 Emotional Response Inhibition in Healthy Older and Younger Adults

Jill Waring¹, Taylor Greif¹, Manon Masson¹, Kenzie Dye¹, Michael Hase¹; ¹Saint Louis University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B23 Experience sampling of emotional states induced during Pavlovian fear conditioning

Daniel Stjepanović¹, Kevin S. LaBar¹; ¹Center for Cognitive Neuroscience & Dept of Psychology and Neuroscience, Duke University, Durham, NC, USA Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B24 The role of the medial prefrontal cortex (mPFC) in the generalization of conditioned fear

Kelsey Spalding¹; ¹University of Iowa

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B25 Neural Activation Accompanying Emotional Judgments of Faces by Latino Youth-At-Risk for Bipolar Disorder

Kareem Al-Khalil¹, Hugo Sandoval², Michael Escamilla², Karl Kashfi³, Luis Ramos-Duran², Ivette Noriega¹, Desiree Walisky^{1,3}, Ravi Rajmohan³, Michael O'Boyle^{1,3}; ¹Texas Tech University, Lubbock, ²Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, ³Texas Tech University Health Sciences Center, Lubbock

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B26 Tempo of Self-Selected Happy Music on Posterior to Frontal Theta Asymmetry

Christine Rapadas Jimenez¹, Trevor C. J. Jackson¹, Mark W. Geisler¹; ¹San Francisco State University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B27 Effects of intelligence mindset on performance are mediated by dIPFC and caudate

Christina Bejjani¹, Samantha DePasque², Jamil Bhanji³, Elizabeth Tricomi³;
¹Duke University, ²UCLA, ³Rutgers University, Newark

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B28 Age Differences in the Neural Correlates of Selective Memory for Emotion: An Event-Related Potential Study

Sara Gallant¹, Carson Pun¹, Lixia Yang¹; ¹Ryerson University Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster B29 Sleep deprivation impairment of flexible attentional control is dependent on dopaminergic genotype

Paul Whitney¹, John Hinson¹, Brieann Satterfield¹, Hans Van Dongen¹; ¹Washington State University

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B30 Activity flows over task-evoked networks shape cognitive task activations across task switches

Michael Cole¹, Takuya Ito¹, Douglas Schultz¹, Ravi Mill¹; ¹Rutgers University-Newark

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B31 Dissociable Patterns of PFC-Cerebellum Connectivity WIth Implications for Hierarchical Models of Executive Function

Joseph Orr¹, Bryan Jackson¹, Jessica Bernard¹; ¹Texas A&M University Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B32 Evolutionary Purpose Of A Left-Lateralized Task-Switch Mechanism: Insight From A Novel Behavioral Procedure

Nicole M Bowlsby¹, Barbara J Rutherford¹; ¹University of British Columbia Okanagan

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B33 Inflexible Cognitive Control Processes in Children with Autism Spectrum Disorder

Jeremy Hogeveen¹, Matthew Elliott¹, Christine Wu Nordahl¹, Marie K Krug¹, Marjorie Solomon¹; ¹University of California-Davis

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B34 Differential conflict adaptation between cognitive control and sentence comprehension versus production

Malathi Thothathiri¹, Daniel Evans¹; ¹The George Washington University Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B35 Investigating the Functional Structure and Dynamics of the Prefrontal Cortex

Savannah Cookson^{1,2}, Eric Schumacher¹; ¹Georgia Institute of Technology, ²University of California, Berkeley

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B36 Assessing the role of norepinephrine in attentional flexibility: A pupillometry study

Rebecca D. Calcott¹, Jason Hubbard¹, Elliot T. Berkman¹; ¹University of Oregon

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B37 Knowledge of temporal delay instantiates distinct neural pathways for proactive cognitive control

Jacqueline Janowich¹, James Cavanagh¹; ¹University of New Mexico Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B38 Reward identity prediction error signaling in human orbitofrontal cortex

James D. Howard¹, Thorsten Kahnt¹; ¹Northwestern University Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster B39 Self-Monitoring after Traumatic Brain Injury

Leslie Burton¹; ¹University of Connecticut

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B40 Predictors of metacognition in dreaming and waking: State versus trait factors

Tracey Kahan¹, Birgit Koopmann-Holm¹; ¹Santa Clara University Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B41 Modulation of Event-related Potential Markers of Sustained Response Inhibition in Intensive Meditation Training

Anthony P. Zanesco^{1,2}, Brandon G. King^{1,2}, Chivon E. Powers², Kezia R. Wineberg², Rosanna De Meo², Clifford D. Saron²; ¹University of California, Davis, ²UC Davis Center for Mind and Brain

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B42 EEG Reveals Deficits in Cognitive Control Following Brain Injury

James Cavanagh¹, James Broadway¹, Kevin Wilson¹, Rebecca Rieger¹, Andrew Mayer²: ¹University of New Mexico, ²Mind Research Network

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B43 ERP Evidence for Conflict in Contingency Learning

Chris Blais¹, Peter S Whitehead², Gene A Brewer¹; ¹Arizona State University, ²Duke University

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B44 Tip-of-the-Tongue States Enhance Processing to Feedback

Janet Metcalfe¹, Paul A. Bloom¹, Judy Xu¹, Matti Vuorre¹, David Friedman¹; ¹Columbia University

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B45 Model-based differentiation of networks of reward and impulsivity in cannabis use disorders

Ariel Ketcherside¹, Joseph Dunlop², Francesca Filbey¹; ¹1School of Behavior and Brain Sciences, University of Texas at Dallas, ²SAS, Cary, NC Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B46 Cortical markers show differences in areas sustaining inhibitory control between children and adults

Marine Moyon¹, Katell Mevel¹, Lisa Delalande¹, François Orliac¹, Sonia Dollfus².³, Olivier Houdé¹.⁴, Carole Peyrin⁵, Wim De Neys¹, Nicolas Poirel¹.⁴, Grégoire Borst¹, Gregory Simon¹; ¹LaPsyDÉ, UMR 8240, CNRS, Université Paris Descartes, Université de Caen Normandie, France, ²ISTS, UMR 6301, CNRS, CEA, Caen, France, ³CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, France, ⁴Institut Universitaire de France (IUF), Paris, ⁵LPNC, UMR 5105, CNRS, Université Pierre Mendès France, France

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B47 Bilingualism, Self-Control, and Impulsivity do not Predict Flanker, Simon, or Stroop-Like Interference: Gender Does

Kenneth Paap¹, Regina Anders¹, Roman Mikulinsky¹, Shigeaki Masuda¹, Rodriguez Gersom¹, Mason Lauren¹; ¹San Francisco State University Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster B48 Prefrontal dopamine metabolism predicts neurostimulation-linked working memory training gains

Kevin Jones^{1,2}, Jaclyn Stephens^{1,3}, Marian Berryhill¹, ¹University of Nevada, Reno, ²Georgetown University Medical Center, ³Kennedy Krieger Institute Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B49 Interacting long-range networks govern control over working memory

Elizabeth L. Johnson¹, Callum D. Dewar^{1,2}, Anne-Kristin Solbakk³, Tor Endestad³, Torstein R. Meling³, Robert T. Knight¹; ¹University of California, Berkeley, ²University of Illinois, ³University of Oslo

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B50 Decoding the content and the rule during visuomotor working memory

Romain Quentin¹, Jean-Remi King², Etienne Sallard¹, Nathan Fishman¹, Ethan Buch¹, Ryan Thompson¹, Leonardo Cohen¹; ¹National Institute of Neurological Disorders and Stroke (NINDS/NIH), ²New York University (NYLI)

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B51 More power to complexity: event-related desynchronization in the alpha-band responds to complexity and not numerosity of objects in visual working memory (VWM)

Shriradha Geigerman¹, Anthony V McVey¹, Alexandria B Cook², Haoxiang Yang³; ¹Georgia Institute of Technology, ²Georgia State University, ³Northwestern University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B52 Working memory capacity related to dorsolateral prefrontal activity in monkeys

Hua Tang¹, Xue-Lian Qi¹, Mitchell Riley¹, Christos Constantinidis¹; ¹Wake Forest School of Medicine

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B53 Abnormal brain network activity underlying internal speech in schizophrenia

Nicole Sanford^{1,2}, Todd Woodward^{1,2}; ¹University of British Columbia, ²BC Children's Hospital Research Institute

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster B54 Selective Attention and Load Effects in Parietal Cortex: A complex picture of working memory

Brandee Feola¹, Donald J. Bolger^{1,2}, Toby Hamovitz³, Lesley Sand¹, Amber M. Sprenger³, Sharona M. Atkins¹,², Michael R. Dougherty³; ¹Human Development and Quantitative Methodology Department, University of Maryland, College Park, ²Department of Neuroscience and Cognitive Sciences Department, University of Maryland, College Park, ³Psychology Department, University of Maryland, College Park

Topic Area: EXECUTIVE PROCESSES: Working memory

Top-down modulation of threatening Poster B55 representations in visual working memory

Bo-Cheng Kuo¹, Yei-Yu Yeh¹; ¹National Taiwan University, Taiwan Topic Area: EXECUTIVE PROCESSES: Working memory

Three-Dimensional MOT task as an assessment Poster B56 tool for attention and working memory: a comparison with traditional

Chiara Perico^{1,2}, Jocelyn Faubert³, Armando Bertone^{1,2,4}; ¹Perceptual Neuroscience Laboratory for Autism and Development, ²School/Applied Child Psychology, Department of Education and Counselling Psychology, McGill University, ³Laboratoire de psychophysique et de perception visuelle, École d'optométrie, Université de Montréal, ⁴Human Development, Department of Education and Counselling Psychology, McGill University

Topic Area: EXECUTIVE PROCESSES: Working memory

Leveraging the Test Effect to Improve Maintenance Poster B57 of the Gains Achieved Through Cognitive Rehabilitation

Rhonda Friedman¹, Sarah Snider¹, Kevin Jones¹; ¹Georgetown University Topic Area: LANGUAGE: Other

Poster B58 Network-level analysis of language abilities in chronic aphasia

And Turken¹, Timothy Herron¹, Brian Curran¹, Krista Parker¹, Juliana Baldo¹, Nina Dronkers¹; ¹VA Northern California Health Care System, Medical Research, ²UC Davis Medical School

Topic Area: LANGUAGE: Other

Attentional Control during Language Comprehension: Connecting Brain to Behavior

Megan Boudewyn¹, Cameron Carter¹; ¹University of California, Davis Topic Area: LANGUAGE: Other

Poster B60 The influence of dialogue context on the relationship between language production and comprehension

Kaitlyn Litcofsky¹, Janet van Hell¹; ¹Pennsylvania State University

Topic Area: LANGUAGE: Other

Poster B61 Neural correlates of word frequency effects in bilinguals

Myriam Oliver¹, Manuel Carreiras^{1,2}, Pedro M. Paz-Alonso¹; ¹BCBL. Basque Center on Cogntion, Brain and Language, 2IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

Topic Area: LANGUAGE: Other

Poster B62 Language experience and phonological rule modulate pre-attentive lexical tone perception

Wen-Jui Kuo¹, Claire H. C. Chang¹, Tzu-Hui Lin¹; ¹Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan

Topic Area: LANGUAGE: Other

Poster B63 Using fNIRS to Investigate Speech-Language Tasks

Nicholas Wan¹, Allison Hancock¹, Ronald Gillam¹; ¹Utah State University

Topic Area: LANGUAGE: Other

Poster B64 Violating linguistic prediction in musicians and non-musicians

Allison R. Fogel¹, Edward W. Wlotko¹, Gina R. Kuperberg^{1,2,3}, Aniruddh D. Patel1; 1Tufts University, 2MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, ³Massachusetts General Hospital

Topic Area: LANGUAGE: Other

Poster B65 **ERP Measures of Anodal Transcranial Direct Current Stimulation Effects on Second Language Vocabulary** Acquisition

He Pu¹, Sarah Perlo¹, Katherine Gawlas¹, Joshua Manning¹, Marianna Eddy^{1,2}, Katherine J. Midgley³, Phillip J. Holcomb^{1,3}; ¹Tufts University, ²U.S Army Natick Soldier Research, Development, and Engineering Center, ³San Diego State University

Topic Area: LANGUAGE: Other

Poster B66 Visual cortex entrains to low-frequency amplitude variability in sign language

Geoffrey Brookshire¹, Jenny Lu¹, Howard Nusbaum¹, Susan Goldin-Meadow¹, Daniel Casasanto¹; ¹The University of Chicago

Topic Area: LANGUAGE: Other

ERP correlates of early phonological processing in Poster B67 deaf and hearing readers: Do they reflect the same underlying mechanisms?

Eva Gutierrez^{1,2}, Marta Vergara¹, Eva Rosa³, Ana Marcet¹, Amelia Maña¹, Manuel Perea¹; ¹University of Valencia, Spain, ²University College London, ³Catholic University of Valencia San Vicente Mártir

Topic Area: LANGUAGE: Other

Poster B68 Cortical plasticity of sentence processing after classroom-based training experience

Zhenghan Qi¹, Michelle Han¹, Jennifer Minas¹, Amy Finn², John Gabrieli¹; ¹Massachusetts Institute of Technology, ²University of Toronto

Topic Area: LANGUAGE: Other

The brain dissociates between different levels of Poster B69 prediction during language comprehension

Gina R. Kuperberg^{1,2,3,4}, Edward W. Wlotko^{1,5}, Simone J. Riley¹, Margarita Zeitlin¹, Maria Luiza Cuhna-Lima¹; ¹Tufts University, ²Massachusetts General Hospital, ³Athinoula A. Martinos Center for Biomedical Imaging, ⁴Harvard Medical School, 5Moss Rehabilitation Research Institute

Topic Area: LANGUAGE: Semantic

Poster B70 Cerebral Asymmetries in Metaphor Comprehension: Examining the Influence of Task

Natalie Kacinik^{1,2}, Kole Norberg^{1,3}; ¹Brooklyn College, CUNY, ²The Graduate Center, CUNY, 3Kingsborough Community College, CUNY

Topic Area: LANGUAGE: Semantic

Poster B71 Motor cortex in figurative language comprehension: a TMS study

Yury Shtyrov^{1,2}, Elena Kulkova², Matteo Feurra², Andriy Myachykov^{2,3}; ¹Aarhus University, Denmark, ²NRU Higher School of Economics, Moscow, ³Northumbria University, Newcastle upon Tyne

Topic Area: LANGUAGE: Semantic

Poster B72 Lesion Analysis of Single-Word Auditory Comprehension in 109 Patients

Juliana Baldo¹, Carl Ludy¹, Brian Curran¹, And Turken¹, Nina Dronkers^{1,2};
¹VA Northern California Health Care System, ²University of California, Davis

Topic Area: LANGUAGE: Semantic

Poster B73 Linguistic and Non-Linguistic Semantic Processing in Individuals with Autism Spectrum Disorders: An ERP Study

Emily Coderre¹, Mariya Chernenok^{1,2}, Barry Gordon^{1,3}, Kerry Ledoux¹; ¹Cognitive Neurology/Neuropsychology, Department of Neurology, The Johns Hopkins University School of Medicine, ²Center for Mind and Brain, University of California, Davis, ³Department of Cognitive Science, The Johns Hopkins University

Topic Area: LANGUAGE: Semantic

Poster B74 The impact of minimal context on predictions generated during sentence comprehension

Edward W. Wlotko^{1,2}, Bram Vandekerckhove², Connie Choi², Minjae Kim^{2,4}, Gina R. Kuperberg^{2,3,4,5}; ¹Moss Rehabilitation Research Institute, ²Tufts University, ³Massachusetts General Hospital, ⁴Athinoula A. Martinos Center for Biomedical Imaging, ⁵Harvard Medical School

Topic Area: LANGUAGE: Semantic

Poster B75 The effects of aphasia on nonverbal counting tasks

Alexander Kranjec^{1,2}, John Verbos¹, Sarah Wallace¹; ¹Duquesne University, ²Carnegie Mellon University

Topic Area: LANGUAGE: Semantic

Poster B76 Pragmatic humor influences semantic prediction and conflict resolution in online comprehension: Evidence from ERPs

Megan Zirnstein¹, Amy Kinsey², Rhonda McClain², Sybrine Bultena³, Dorothee Chwilla³, Judith F. Kroll^{1,2}; ¹University of California, Riverside, ²Pennsylvania State University, ³3Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen

Topic Area: LANGUAGE: Semantic

Poster B77 Precursors and Processes of Prediction: A Word-Stem Completion ERP Study

Ryan J. Hubbard¹, Kara D. Federmeier¹; ¹Beckman Institute, University of Illinois. Urbana-Champaign

Topic Area: LANGUAGE: Semantic

Poster B78 Neurocognitive effects of sentential constraint in visual word recognition

Nyssa Bulkes¹, Darren Tanner¹; ¹University of Illinois at Urbana-Champaign Topic Area: LANGUAGE: Semantic

Poster B79 Harry Potter and the Chamber of WHAT?: Realtime semantic access is a function of the individual's knowledge

Melissa Troyer¹, Marta Kutas¹; ¹University of California, San Diego Topic Area: LANGUAGE: Semantic

Poster B80 Adult Second Language Learning and Semantic Integration as Revealed by EEG and Eye-tracking

Kiera O'Neil¹, Ana Zappa², Jean-Marie Pergandi², Aaron Newman¹, Daniel Mestre^{2,3}, Cheryl Frenck-Mestre^{2,3}; ¹Dalhousie, ²Aix Marseille Université.

³Centre National de la Recherche Scientifique

Topic Area: LANGUAGE: Semantic

Poster B81 Representational similarity in the brain and computational language processing: New clues about the neural encoding of word meaning.

Francesca Carota^{1,2,3,4}, Hamed Nili^{2,5}, Nikolaus Kriegeskorte^{2,3}, Friedemann Pulvermüller^{1,2,4}; ¹Humboldt Universit ät zu Berlin, Germany, ²MRC Cognition and Brain Sciences Unit, Cambridge, UK, ³University of Cambridge, Downing Street, Cambridge, CB2 3EB United Kingdom, ⁴Freie Universität, Berlin, Germany, ⁵University of Oxford, Oxford, UK

Topic Area: LANGUAGE: Semantic

Poster B82 A neurocomputational model of lexical-semantic memory based on feature representation of concepts

Cristiano Cuppini¹, Eleonora Catricalà², Elisa Magosso¹, Stefano Cappa², Mauro Ursino¹; ¹University of Bologna, Italy, ²IUSS, Pavia, Italy Topic Area: LANGUAGE: Semantic

Poster B83 tDCS to premotor cortex changes action verb understanding: Complementary effects of inhibitory and excitatory stimulation

Tom Gijssels¹.², Richard B. Ivry³, Daniel Casasanto¹; ¹University of Chicago, ²Vrije Universiteit Brussel, Belgium, ³University of California, Berkeley Topic Area: LANGUAGE: Semantic

Poster B84 Value-Based Remembering and Executive Functioning in Aging

Barbara J. Knowlton¹, Joseph P. Hennessee¹, Alan D. Castel¹; ¹UCLA Topic Area: LONG-TERM MEMORY: Development & aging

Poster B85 Mental-orientation: A novel approach to Alzheimer's disease

Gregory Peters-Founshtein^{1,2}, Michael Peer^{1,2}, Yanai Rein¹, Barak Yoresh^{1,4}, Shlomzion Kahana Merhavi², Zeev Meiner³, Shahar Arzy^{1,2};

¹Neuropsychiatry Lab, Faculty of Medicine, Hadassah Hebrew University Medical School, Jerusalem, Israel, ²Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel, ³Departments of Physical Medicine and Rehabilitation, Hadassah University Medical Center, Jerusalem, Israel, ⁴The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel Topic Area: LONG-TERM MEMORY: Development & aging

Poster B86 Roles of the posterior-anterior shift and of the parietal activation maintenance in age-related protective mechanisms involved in memory

Emilie Alibran¹, Badiaa Bouazzaoui¹, Lucie Angel¹, Marie Gomot¹, Michel Isingrini¹; ¹University of Tours

Topic Area: LONG-TERM MEMORY: Development & aging

Poster B87 A Look at Age and Relational Memory: Explicit and Implicit Measures Show Differences in Relational Memory Performance Between Healthy Young and Older Adults

David Warren¹, Kelsey Spalding², Alice Olvera^{2,3}, Kevin Selden², Melissa Duff⁴, Daniel Tranel²; ¹University of Nebraska Medical Center, ²University of Iowa, ³Loyola Marymount University, ⁴Vanderbilt University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster B88 Age differences in pre-stimulus subsequent memory effects: An event-related potential study

Joshua Koen¹, Erin Horne¹, Nedra Hauck¹, Michael Rugg¹; ¹University of Texas at Dallas

Topic Area: LONG-TERM MEMORY: Development & aging

Neural Responses Decrease While Performance Poster B89 Increases with Practice: A Neural Network Model

Milena Rabovsky¹, Steven S. Hansen², James L. McClelland²; ¹Freie Universitaet Berlin, Germany, ²Stanford University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster B90 The neural correlates of functional compensation in high performing older adults

Abdelhalim Elshiekh¹, Sricharana Rajagopal², Stamatoula Pasvanis², Elizabeth Ankudowich¹, Natasha M Rajah^{1,2}; ¹Department of Neuroscience, McGill University, ²Douglas Mental Health University Institute and Department of Psychiatry, McGill University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster B91 **Empirical Validation of a Neuropsychological** Battery to Assess Frontal Lobe and Medial Temporal Lobe Functioning in Young and Older Adults

Anjali Thapar¹, Allen Osman¹; ¹Bryn Mawr College

Topic Area: LONG-TERM MEMORY: Development & aging

Age-related dedifferentiation of anterior and Poster B92 posterior hippocampal structural whole-brain covariance

Kristin Nordin¹, Jonas Persson¹, Eva Stening¹, Agneta Herlitz², Elna-Marie Larsson¹, Hedvig Söderlund¹; ¹Uppsala University, Uppsala, Sweden, ²Karolinska Institutet, Solna, Sweden

Topic Area: LONG-TERM MEMORY: Development & aging

Developmental Difference in Hippocampal Poster B93 Segmentation using FreeSurfer Compared with Manual Demarcation

Qijing Yu¹, Roya Homayouni¹, Andrea Shafer¹, Naftali Raz¹, Noa Ofen¹; ¹Wayne State University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster B94 Vocabulary acquisition during sleep

Marc Züst¹, Simon Ruch¹, Roland Wiest², Katharina Henke¹; ¹University of Bern, Switzerland, ²University Hospital of Bern, Switzerland

Topic Area: LONG-TERM MEMORY: Episodic

Depth electrode recording of the amygdala-Poster B95 hippocampal network during mnemonic discrimination of emotional scenes

Jie Zheng¹, Rebecca F. Stevenson¹, Logan D. Harriger¹, Stephanie L. Leal², Sumeet Vadera¹, Michael A. Yassa¹, Jack J. Lin¹; ¹University of California, Irvine, ²University of California, Berkeley

Topic Area: LONG-TERM MEMORY: Episodic

Older adults with one vs. no apolipoprotein E type 4 allele display different patterns of fMRI activity related to recognition, but not to spatial context

E. H. Yu^{1,2}, M-E Lafaille-Magnan^{1,2}, S. Pasvanis², S. Rajagopal², M.N. Rajah^{1,2}, PREVENT-AD Research Group³; ¹McGill University, ²Douglas Mental Health University Institute, Montreal, Quebec, Canada, 3https://preventad.loris.ca/team 2016 09 16.pdf

Topic Area: LONG-TERM MEMORY: Episodic

Poster B97 Normal variation in relational memory and pattern separation can be predicted by white matter connectivity

Chi Ngo¹, Kylie Alm¹, Athanasia Metoki¹, Nora Newcombe¹, Ingrid Olson¹; ¹Temple University

Topic Area: LONG-TERM MEMORY: Episodic

Poster B98 **Elucidating Neural Correlates of Olfactory** Targeted Memory Reactivation in the Sleeping Human Brain

Laura Shanahan¹, Eva Gjorgieva¹, Jay Gottfried^{1,2}; ¹Northwestern University Feinberg School of Medicine, ²Northwestern University Weinberg College of

Arts and Sciences

Topic Area: LONG-TERM MEMORY: Episodic

Poster B99 Boosting the Brain: Frontal-midline Theta Neurofeedback Training and Its Transfer

Kathrin C. J. Eschmann^{1,2}. Regine Bader². Axel Mecklinger^{1,2}: ¹International Research Training Group "Adaptive Minds" (GRK 1457), ²Saarland University, Saarbrücken, Germany

Topic Area: LONG-TERM MEMORY: Episodic

Poster B100 The Lateral Parietal Cortex Processes both the **Encoding and Retrieval of Spatial Long-Term Memories**

Oliver Gray¹, Daniella Ryding¹, Daniela Montaldi¹; ¹University of Manchester

Topic Area: LONG-TERM MEMORY: Episodic

Visual sampling predicts hippocampal activity Poster B101

Zhong-Xu Liu¹, Kelly Shen¹, Rosanna K. Olsen^{1,2}, Jennifer D. Ryan^{1,2}; ¹Rotman Research Institute at Baycrest Health Sciences, Toronto, ²University of Toronto

Topic Area: LONG-TERM MEMORY: Episodic

Poster B102 Enhanced avoidance habits in people with a history of early-life stress

Tara Patterson¹, Barbara Knowlton¹; ¹University of California Los Angeles Topic Area: LONG-TERM MEMORY: Other

Poster B103 Your favorite number is special (to you): ERP evidence for item-level differences in retrieval of information from

Danielle S. Dickson^{1,2}, Kara D. Federmeier²; ¹University of Texas at San Antonio, ²University of Illinois at Urbana-Champaign

Topic Area: LONG-TERM MEMORY: Other

Poster B104 Forgotten visual events from a naturalistic TVviewing paradigm are associated with higher inter-trial coherence in the alpha band of the EEG

Daniel A. Rogers¹, Phillip M. Alday¹, Andrew W. Corcoran¹, Jessica Gysin-Webster¹, Magdalena Nenycz-Thiel², Duane Varan³, Matthias Schlesewsky¹, Ina Bornkessel-Schlesewsky¹; ¹School of Psychology, Social Work and Social Policy, University of South Australia, ²School of Marketing, University of South Australia, 3MediaScience, Austin, Texas, USA

Topic Area: LONG-TERM MEMORY: Other

Poster B105 Age-related changes to hippocampal and neocortical oscillations during relational binding and comparison.

Renante Rondina^{1,2}, Rosanna Olsen¹, Morgan Barense², Jed Meltzer^{1,2}, Jennifer Ryan^{1,2}; ¹Rotman Research Institute, ²University of Toronto

Topic Area: LONG-TERM MEMORY: Other

Poster B106 Influence of sex on genetic contributions to default mode network associations: a structural MRI study of monozygotic and dizygotic twin pairs

Matthew Jerram¹, Elena Molokotos¹, Amy Janes^{1,2}; ¹Suffolk University, ²McLean Imaging Center

Topic Area: NEUROANATOMY

Poster B107 Probing plasticity of auditory cortex in adulthood: Structural brain changes following pitch discrimination training

Elisabeth Wenger¹, André Werner¹, Simone Kühn^{1,2}, Ulman Lindenberger¹; ¹Max Planck Institute for Human Development, Berlin, Germany, ²University Clinic Hamburg-Eppendorf, Hamburg, Germany

Topic Area: NEUROANATOMY

Poster Session 2017 Annual Meeting

Poster B108 White matter integrity predicts cognitive traininginduced improvements in attention and executive functioning in schizophrenia

Karuna Subramaniam¹, Jeevit Gill¹, Melissa Fisher², Pratik Mukherjee¹, Srikantan Nagarajan¹, Sophia Vinogradov²; ¹University of California San Francisco. ²University of Minnesota

Topic Area: NEUROANATOMY

Poster B109 Using Patterns of Functional Brain Connectivity to Predict Autism Spectrum Disorder

Hakeem Brooks¹, Jin Cheong², Jeremy Cohen¹, Luke Chang²; ¹Xavier University of Louisiana, New Orleans, LA, ²Dartmouth College, Hanover, NH Topic Area: NEUROANATOMY

Poster B110 Gray matter volume differences in children with discrepant reading ability or poor reading ability

Audreyana Jagger¹, Michelle Kibby¹; ¹Southern Illinois University Topic Area: NEUROANATOMY

Poster B111 Subclinical Eating Disorder Traits are Correlated with Cortical Structure in Regions Associated with Food Perception and Food Reward

Emily Richard¹, Cynthia Peng¹, Esha Mehta¹, Caylynn Yao¹, Annchen Knodt², Ahmad Hariri², Gregory Wallace¹; ¹The George Washington University, ²Duke University

Topic Area: NEUROANATOMY

Poster B112 Tactile Enumeration and Brain Plasticity in Acalculia

Zahira Ziva Cohen¹, Isabel Arend¹, Kenneth Yuen², Ronel Veksler¹, Sharon Naparstek¹, Yarden Gliksman¹, Avishai Henik¹; ¹Ben-Gurion University of the Negev, Beer Sheva, Israel, ²Johannes Gutenberg University Medical Center, Mainz. Germany

Topic Area: NEUROANATOMY

Poster B113 Differences in brain structures in healthy young smokers: an MRI volumetric study

Gergely Darnai^{1,2}, Beatrix Lábadi¹, Āndrás Zsidó¹, Orsolya Inhóf¹, Eszter Simon¹, Eszter Kohn¹, Gábor Perlaki^{3,4}, Gergely Orsi^{3,4}, Norbert Kovács², József Janszky^{2,4}, Tamás Bereczkei¹; ¹University of Pécs, Department of Psychology, Hungary, ²University of Pécs, Department of Neurology, Hungary, ³Pécs Diagnostic Centre, Pécs, Hungary, ⁴MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary

Topic Area: NEUROANATOMY

Poster B114 Age predicts Changes in Functional Networks in Early Childhood: Integration of Sensory and Cognitive Networks

Christiane Rohr¹, Anish Arora¹, Ivy Cho¹, Kari Parsons¹, Prayash Katlariwala¹, Dennis Dimond¹, Deborah Dewey¹, Signe Bray¹; ¹The University of Calgary, Canada

Topic Area: NEUROANATOMY

Poster B115 Elevated inflammation associated with reduced brain volume and white matter integrity in the Coronary Artery Risk Development in Young Adults Study

Aoife O'Donovan¹, Allison Kaup¹, Lenore Launer³, Stephen Sidney⁴, Kristine Yaffe¹, 'University of California, San Francisco, 'San Francisco VA Medical Center, 'National Institute on Aging, 'Kaiser Permanente Northern California

Topic Area: NEUROANATOMY

Poster B116 Differences in association for surface area and thickness within functional brain networks between monozygotic and dizygotic twin pairs

Elena Molokotos¹, Amy Janes², Matthew Jerram¹; ¹Suffolk University, ²McLean Imaging Center

Topic Area: NEUROANATOMY

Poster B117 Sensorimotor Synchronization at 3 Tempi

GEORGIOS MICHALAREAS^{1,3}, Francesco Di Pompeo², Pascal Fries³, David Poeppel^{1,4}; ¹Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, ²Institute for Advanced Biomedical Technologies, University G. D'Annunzio, ³Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, ⁴Department of Psychology, New York University

Topic Area: PERCEPTION & ACTION: Motor control

Poster B118 Grasping Movement (Re-)planning Interferes with Working Memory during the Maintenance Process: An ERP Study

Rumeysa Gunduz Can^{1,2}, Thomas Schack^{1,2,3}, Dirk Koester^{1,2}; ¹Faculty of Psychology and Sport Science, Bielefeld University, Germany, ²Cognitive Interaction Technology - Center of Excellence, Bielefeld University, Germany, ³Research Institute for Cognition and Robotics, Bielefeld University, Germany

Topic Area: PERCEPTION & ACTION: Motor control

Poster B119 Feedforward Motor Enhancement of Auditory Sensory Thresholds

John Myers¹, Jeffrey Mock¹, Edward Golob¹; ¹University of Texas at San Antonio

Topic Area: PERCEPTION & ACTION: Motor control

Poster B120 Neural Correlates of a Prospective Sense of Agency

Nura Sidarus^{1,2}, Matti Vuorre³, Patrick Haggard¹; ¹University College London, ²Ecole Normale Supérieure - PSL Research University, ³Columbia University Topic Area: PERCEPTION & ACTION: Motor control

Poster B121 Dissecting stimulus-dependent and stimulusindependent factors in an implicit learning task reveals a mixture of performance enhancing and performance eroding processes on different time scales

Balázs Török^{1,3}, Karolina Janacsek^{2,3}, Dávid G. Nagy^{2,3}, Gergő Orbán³, Dezso Nemeth^{2,3}; ¹Budapest University of Technology and Economics, ²Eötvös Loránd University, ³Hungarian Academy of Sciences

Topic Area: PERCEPTION & ACTION: Motor control

Poster B122 Reliability of fMRI data during speech production tasks across scanning sessions

Saul Frankford¹, Alfonso Nieto-Castañón¹, Frank H. Guenther¹; ¹Boston University

Topic Area: PERCEPTION & ACTION: Motor control

Poster B123 Lateralization of hand-related movement imagery: An EEG study

Chris Donoff¹, Chris Madan^{1,2}, Sarah Elke¹, Anthony Singhal¹; ¹University of Alberta, ²Boston College

Topic Area: PERCEPTION & ACTION: Motor control

Poster B124 Implicit Sequence Learning in Children with and Without ASD

Morgan Wright¹, Rebecca Campbell¹, Kaitlyn Tracy¹, Amber Schmitt¹, Jin Bo¹; ¹Eastern Michigan University

Topic Area: PERCEPTION & ACTION: Motor control

Poster B125 Neural correlates of guided and unguided motor timing in Parkinson's disease

Klara Hagelweide^{1,2}, Ellen Binder², Katja Kornysheva³, Esther A. Pelzer^{2,4}, Marc Tittgemeyer⁴, Gereon R. Fink^{2,5}, Ricarda I. Schubotz^{1,2}; ¹University of Muenster, Germany, ²University Hospital Cologne, Germany, ³University College London, Great Britain, ⁴Max Planck Institute for Metabolism Research, Cologne, Germany, ⁵Research Centre Jülich, Germany

Topic Area: PERCEPTION & ACTION: Motor control

Poster B126 Cerebellar-Motor Connectivity in Patients with Schizophrenia: Insight Into Negative Symptom Severity

Jessica Bernard¹; ¹Texas A&M University

Topic Area: PERCEPTION & ACTION: Motor control

Poster B127 Motor cortex excitability during perception of dynamic handwritten and typed text

Chelsea Gordon¹, Ramesh Balasubramaniam¹; ¹University of California, Merced

Topic Area: PERCEPTION & ACTION: Motor control

Poster B128 Electrophysiological Correlates of an Excitatory:Inhibitory Imbalance in Children with Autism Spectrum Disorder

Lauren C. Shuffrey^{1,2,3,4}, Lisa Levinson¹, Heather L. Green¹, Dayna Moya Sepulveda¹, Grace Pak¹, Alexis Becerra¹, Karen Froud¹; ¹Teachers College, Columbia University, ²Columbia University Medical Center, ³New York State Psychiatric Institute, ⁴Center for Autism and the Developing Brain

Topic Area: PERCEPTION & ACTION: Vision

Poster B129 Cultural specialization of visual cortex

John C. Ksander¹, Laura E. Paige¹, Hunter A. Johndro^{1,2}, Angela H. Gutchess¹; ¹Brandeis University, ²Tufts University Topic Area: PERCEPTION & ACTION: Vision

Poster B130 It's the Right Cue: Hemispheric Differences in Predictive Processing of Natural Scenes.

Manoj Kumar¹, Yanqi Zhang¹, Diane M. Beck¹, Kara D. Federmeier¹; ¹University of Illinois at Urbana-Champaign

Topic Area: PERCEPTION & ACTION: Vision

Poster B131 Category Learning Generates Categorical Perception: Behavioral, Neural and Computational Aspects

Fernanda Perez Gay Juarez^{1,2,3}, Christian Thériault^{2,3}, Madeline Gregory^{1,3}, Daniel Rivas^{2,3}, Hisham Sabri^{2,3}, Stevan Harnad^{1,2}; ¹McGill University, ²Université du Québec à Montréal, ³Center for Research in Brain, Language and Music

Topic Area: PERCEPTION & ACTION: Vision

Poster B132 Which way: Neural decoding of spatial directions in images, schemas, and words

Steven Weisberg¹, Steven Marchette¹, Anjan Chatterjee¹; ¹University of Pennsylvania

Topic Area: PERCEPTION & ACTION: Vision

Poster B133 Embodiment and expertise effects on aesthetics judgments

Beatriz Calvo-Merino¹, Alexander Jones², Patrick Haggard³, Bettina Forster¹;
¹City, University of London, ²Middlesex University, ³University College London

Topic Area: PERCEPTION & ACTION: Vision

Poster B134 Deconstructing a Superadditivite Effect of the Sander Parallelogram Illusion

Robert L. Whitwell , Sean Olsen, James T. Enns; The University of British Columbia

Topic Area: PERCEPTION & ACTION: Vision

Poster B135 Comparing computational, object and functional models of scene representation in the human brain

Iris I A Groen¹, Michelle R Greene², Christopher Baldassano³, Li Fei-Fei², Diane M Beck⁴, Chris I Baker¹; ¹National Institutes of Mental Health, ²Stanford University, ³Princeton University, ⁴University of Illinois Topic Area: PERCEPTION & ACTION: Vision

Poster B136 Model-free population receptive field profile estimates reveal information about orientation and ellipticity in early visual areas.

Christian Merkel¹, Jens-Max Hopf^{1,2}, Mircea Ariel Schoenfeld^{1,2}; ¹Otto-von-Guericke University, Magdeburg, ²Leibniz Institute for Neurobiology, Magdeburg

Topic Area: PERCEPTION & ACTION: Vision

Poster B137 Is the N170 lateralization for word and face processing affected by sign language experience and/or deafness?

Zed Sevcikova Sehyr¹, Karen Emmorey¹, Katherine J. Midgley¹, Phillip J. Holcomb¹; ¹San Diego State University

Topic Area: PERCEPTION & ACTION: Vision

Poster B138 Teaching cognitive neuroscience: Transformation from large lecture class to small active learning groups

Brenda Rapp¹, Soojin Park¹, Jeremy Purcell¹, Michael Reese¹; ¹Johns Hopkins University

Topic Area: OTHÉR

Poster B139 Intergenerational early adversity: executive function and stress physiology in parents and children from lower socioeconomic status backgrounds

Eric Pakulak¹, Theodore Bell¹, Ryan Giuliano¹, Christina Karns¹, Helen Neville¹; ¹University of Oregon

Topic Area: EXECUTIVE PROCESSES: Other

Poster B140 Measures of Functional Networks Correlate with Chronic Symptom Status in Patients with Traumatic Brain Injury

Keith Main^{1,2,3}, Anna-Clare Milazzo^{2,3}, Bernard Ng³, Salil Soman^{2,3,4}, Jordan Nechvatal^{2,3}, Jennifer Kong², Stephanie Kolakowsky-Hayner⁵, Ansgar Furst^{2,3}, J. Wesson Ashford^{2,3}, Michael Greicius³, Maheen Adamson^{1,2,3}; ¹Defense and Veterans Brain Injury Center, ²War Related Illness and Injury Study Center, ³Stanford University School of Medicine, ⁴Harvard University Medical School, ⁵Santa Clara Valley Medical Center

Topic Area: EXECUTIVE PROCESSES: Other

Poster B141 Cognitive Control for Speech Production: Evidence for a rostro-caudal activation gradient in the frontal lobes

Nicolas Bourguignon¹, Don Nguyen², Vincent Gracco^{2,3}; ¹Ghent University, ²Centre for Research on Brain, Language & Music, McGill University, ³Haskins Laboratories

Topic Area: EXECUTIVE PROCESSES: Other

Poster Session C

Poster C1 The brain pulsatility: an index of neurocognitive aging

Badiaa Bouazzaoui¹, Lucie Angel¹, Michel Isingrini¹, Severine Fay¹, Laurence Taconnat¹, Sandrine Vanneste¹, Moise Ledoux¹, Frédéric Patat^{2,3}, Vincent Camus², Laurent Barantin², Frédéric Andersson², Jean-Pierre Remenieras²; ¹Université de Tours, UMR CNRS 7295 Centre de Recherches sur la Cognition et l'Apprentissage, ²Université de Tours, UMR INSERM U930 Imagerie & Cerveau, ³CIC IT 1415 Ultrasons et radiopharmaceutiques Topic Area: ATTENTION: Development & aging

Poster C2 Increased neural response to wins over losses with older adults: Examining the positivity bias in aging

Anna McCarrey^{1,2}, Joshua Goh^{2,3}, Vijay Venkatraman⁴, Claudia Wolf², Gabriela Gomez², Susan Resnick²; ¹Idaho State University, ²National Institute on Aging, ³National Taiwan University College of Medicine, ⁴University of Melbourne

Topic Area: ATTENTION: Development & aging

Poster C3 The Effects of 1 Hour Sleep Loss in School-Aged Children: An Event-Related Potentials Study

Sarah Leonhardt¹, Josh A. Miller², Dennis L. Molfese³; ¹Carroll College-Helena, MT, ²Colgate University, ³University of Nebraska-Lincoln Topic Area: ATTENTION: Development & aging

Poster C4 Contributions of medial prefrontal cortex to internally directed attention

Julia W. Y. Kam¹, Jack L. Lin², Tor Endstead³, Anne-Kristin Solbakk³, Pal G. Larsson⁴, Sandon Griffin¹, Robert T. Knight¹; ¹University of California, Berkeley, ²University of California, Irvine, ³University of Oslo, ⁴Oslo University Hospital

Topic Area: ATTENTION: Other

Poster C5 Engaging narratives evoke similar brainwaves and lead to similar perception of time

Samantha Cohen¹, Simon Henin², Lucas C. Parra²; ¹The Graduate Center of the City University of New York, ²The City College of the City University of New York

Topic Area: ATTENTION: Other

Poster C6 Individual difference effects on attentional capture by perceptually salient distractors

Tessa Abagis¹, John Jonides¹; ¹University of Michigan

Topic Area: ATTENTION: Other

Poster C7 Reappraisal of stress improves selective attention

Ritsuko Nishimura¹; ¹Aichi Shukutoku University

Topic Area: ATTENTION: Other

Poster C8 Differential neural outcome processing of monetary and non-monetary feedback: a comparison of college drinkers and non-drinkers

Heather E. Soder¹, Geoffrey F. Potts¹; ¹University of South Florida Topic Area: ATTENTION: Other

Poster C9 Greater Theta and Delta Synchrony When Viewing Built versus Natural Environments in a Passive Oddball Task

Salif Mahamane¹, Nick Wan¹, Allison Hancock¹, Alexis Porter², Kerry Jordan¹; ¹Utah State University, ²Carnegie Mellon University

Topic Area: ATTENTION: Other

Poster C10 Revealing the interaction between anxiety-traits and meditation in an attentional reorienting task by brain oscillations

Shao-Yang Tsai¹, Satish Jaiswal¹, Wei-Kuang Liang¹, Chi-Hung Juan¹; ¹National Central University

Topic Area: ATTENTION: Other

Poster C11 Neural Correlates of Educational Engagement

Gad Touchan¹, Samantha Cohen², Denise Robles¹, Stella Ferrari¹, Simon Henin¹, Lucas Parra¹; ¹City College of New York, ²CUNY Graduate Center Topic Area: ATTENTION: Other

Poster C12 The effect of cerebellar lesions on visual attention during motor-cognitive dual-task performance

Erika Künstler¹, Albrecht Günther¹, Carsten Klingner¹, Otto Witte¹, Peter Bublak¹; ¹Jena University Hospital

Topic Area: ATTENTION: Other

Poster C13 Racial Colorblindness: Ironic Attentional Processing of Racial Stimuli

Andre' Oliver¹, Avi Ben-Zeev¹, Mark W. Geisler¹; ¹San Francisco State University

Topic Area: ATTENTION: Other

Poster C14 Learning outcomes and brain-to-brain synchrony between students vary by teaching style: evidence from classroom EEG experimentation

Dana Bevilacqua¹, Suzanne Dikker^{1,2}, Ido Davidesco¹, Lu Wan³, Kim Chaloner⁴, Mingzhou Ding³, David Poeppel¹; ¹New York University, ²Utrecht University, ³University of Florida, ⁴Grace Church High School

Topic Area: ATTENTION: Other

Poster C15 The effects of time pressure on flanker task performance investigated using the drift diffusion model

Chia Ning Chiu¹, Neil G Muggleton^{1,2,3}; ¹National Central University, ²University College London, ³Goldsmiths

Topic Area: ATTENTION: Other

Poster C16 Prior knowledge of category size impacts search

Brianna McGee¹, Chelsea Echiverri¹, Benjamin Zinszer², Rachel Wu¹; ¹University of California, Riverside, ²University of Rochester

Topic Area: ATTENTION: Other

Poster C17 The effect of emotional expectation on episodic encoding in young and older adults

Brittany Corbett¹, Lisa Weinberg¹, Audrey Duarte¹; ¹Georgia Institute of Technology

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C18 Dissociation Between Perceived and Felt Emotions in Musical Anhedonia

Emily Przysinda¹, Matthew Sachs², Yvonne Leung³, Tima Zeng¹, Psyche Loui¹; ¹Wesleyan University, ²University of Southern Califonia, ³Western Sydney University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C19 Impaired proactive control under threat of shock

Tara Miskovich¹, Kenneth Bennett¹, Daniel Stout^{2,3}, Christine Larson¹; ¹1University of Wisconsin-Milwaukee, ²Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, ³Department of Psychiatry, University of California San Diego

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C20 Common Neural Substrates of Down-Regulating Negative Emotion and Social Threat

Teodora Stoica¹, Lindsay Knight¹, Leonard Faul¹, Farah Naaz¹, Brendan Depue; ¹University of Louisville

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C21 Social attention bias in Williams syndrome and Autism spectrum disorder

Kelsie Boulton¹, Melanie Porter^{1,2}; ¹Macquarie University, Sydney, Australia, ²ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C22 Inverse EEG Theta Peak Frequency Oscillation in Frontal- and Parietal-midlines Predicts Lower Cognitive Control and Working Memory in Individuals with High Trait Anxiety

Salahadin Lotfi¹, Kenneth Bennett¹, Maryam Ayazi¹, Erin Peterson¹, Shannon Cavanaugh¹, Christine Larson¹, Hanjoo Lee¹; ¹University of Wisconsin-Milwaukee

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C23 The Effects of Acute Psychosocial Stress on Oculomotor Saccadic Adaptation

Delia A. Gheorghe¹, Muriel T.N. Panouillères², Nicholas D. Walsh¹; ¹University of East Anglia, ²University of Oxford

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C24 Relative Preservation of Emotion Recognition Abilities in Women Compared to Men with Parkinson's Disease

Colleen Frank¹, Emily Flandermeyer², Tara Lineweaver²; ¹University of Michigan, ²Butler University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C25 Incidental haptic sensations influence judgment of crimes: neural underpinnings of embodied cognitions

Michael Schaefer¹, Claudia Denke², Claudia Spies², Andreas Heinz², Andreas Ströhle², Lillia Cherkasskiy³, Hyunjin Song⁴, John Bargh³; ¹Medical School Berlin, Germany, ²Charité – Universitätsmedizin Berlin, Germany, ³Yale University, CT, USA, ⁴Arizona Christian University, AZ, USA Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster C26 The Effects of Self-Selected Music on Cortical Asymmetries

Trevor C. J. Jackson¹, Christine R. Jimenez¹, Mark W. Geisler¹; ¹San Francisco State University

Topic Area: EMOTION & SOCIAL: Other

Poster C27 Enhancing social attention mechanisms via noninvasive brain stimulation

Eva Wiese¹, Eric Joshua Blumberg¹, Aziz Abubshait¹, Raja Parasuraman¹; ¹George Mason University

Topic Area: EMOTION & SOCIAL: Other

Poster C28 Perception of distributive justice is contextdependent as revealed by the N400 effect and behavioral data.

Benjamin Ernst¹, Manuela Sirrenberg¹; ¹Catholic University of Eichstätt-Ingolstadt

Topic Area: EMOTION & SOCIAL: Other

Poster C29 Resting-state temporal dynamics and mindwandering frequency during reading

Erik Erwin Jahner^{1,2}, Xiao-Fei Yang¹, Mary Helen Immordino-Yang¹; ¹USC, ²University of California Riverside

Topic Area: EMOTION & SOCIAL: Other

Poster C30 Role of two embedded syntaxes for belief attribution in adults with typical development and with autism: A behavioral experiment

Morgane Burnel^{1,2,3}, Marcela Perrone-Bertolotti^{1,2}, Stephanie Durrleman⁴, Anne Reboul³, Monica Baciu^{1,2}; ¹Univ. Grenoble Alpes, LPNC, F-38040 Grenoble, France, ²CNRS, LPNC UMR 5105, F-38040 Grenoble, France, ³Univ Lyon, CNRS, Institute for Cognitive Sciences - Marc Jeannerod (UMR 5304), F-69675 Bron, France, ⁴Psycholinguistics Department, Faculty of Psychology and Educational Sciences, University of Geneva

Topic Area: EMOTION & SOCIAL: Other

Poster C31 Age and Modulation of BOLD Response to Task Difficulty: the Protective Effects of Crystallized Knowledge

Zhang Jingting¹, Zhuang Song¹, Patricia A. Reuter-Lorenz², Denise C. Park¹;
¹University of Texas at Dallas, ²University of Michigan
Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C32 Doubly Dissociable Neuromorphological Correlates of Memory and Perceptual Inhibition in Healthy Aging

Teal Eich¹, Ray Razlighi¹, Derek Nee², John Jonides³, Yaakov Stern¹; ¹Columbia University, ²Florida State Univerity, ³University of Michigan Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C33 Incentive effects on cognitive control in younger and older adults: Behavioral and ERP evidence

Farrah Kudus¹, Ryan S. Williams², Benjamin J. Dyson³, Julia Spaniol¹; ¹Ryerson University, ²University of Toronto, ³University of Sussex Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C34 Cognitive Control and Adaptive Learning in Adolescents

Ilyoung Kim¹, Jeanyung Chey¹; ¹Seoul National University Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C35 Different Functional Neural Correlates of Executive Deficits in Amnestic Mild Cognitive Impairment according to High and Low Beta-amyloid Burden

Eun Hyun Seo¹, IL Han Choo²; ¹Chosun University, Gwangju, Korea, ²Chosun University Hospital, Gwangju, Korea

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C36 The impact of interruptions on task performance: Comparing younger and older adults in an event-related spectral perturbation study

Stefan Arnau¹, Kristina Küper¹, Edmund Wascher¹; ¹Leibniz Research Centre for Working Environment and Human Factors (IfADo) Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C37 Age-Related Stereotype Threat Effects on Metacognition

Natasha Fourquet¹, Barbara J Knowlton¹, Castel Alan¹; ¹University of California. Los Angeles

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C38 Moderating Effect of White Matter Integrity on Task-Related Brain Activation

Melanie Lucas¹, Helena Blumen², Meltum Izzetoglu³, Roee Holtzer^{1,2}; ¹Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, ²Albert Einstein School of Medicine, Yeshiva University, Bronx, NY, ³School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C39 Development of the Frontal Aslant Tract (FAT) Using Restricted Diffusion Imaging (RDI)

Dea Garic¹, Iris Broce¹, Heidy Zetina¹, Anthony Steven Dick¹; ¹Florida International University

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C40 Childhood development of behavioral and brain network changes related to basal ganglia: resting-state functional connectivity of striatal regions varies with performance on cognitive tasks in children

Rachel K. Spooner¹, Nicholas Christopher-Hayes¹, Julia M. Stephen², Vince D. Calhoun², Yu-Ping Wang³, Tony W. Wilson¹, David E. Warren¹; ¹University of Nebraska Medical Center, ²University of New Mexico, ³Tulane

University

Topic Area: EXECUTIVE PROCESSES: Development & aging

Poster C41 Additive effects of two DRD2 polymorphisms on working memory performance, and striatal functional and structural MRI measurements

Xin Li¹, Micael Andersson², Lars Nyberg², Jonas Persson¹; ¹Aging Research Center (ARC), Karolinska Institute and Stockholm University, ²Umeå Center for Functional Brain Imaging (UFBI), Umeå University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C42 Revealing unattended working memory representations with fMRI

Annelinde Vandenbroucke^{1,2}, Derek Nee³, Elizabeth Lorenc², Mark D'Esposito²; ¹Donders Center for Cognitive Neuroscience, Rabdoud University Nijmegen, the Netherlands, ²UC Berkeley, California, USA, ³Florida State University, Florida, USA

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C43 Oscillatory mechanisms for orienting attention towards internal representations: effects of aging

Sara Aurtenetxe¹, Eveline van Bijnen¹, Roy P.C. Kessels¹, Joukje M. Oosterman¹, Anna C. Nobre², Ole Jensen³; ¹Donders Institute for Brain Cognition and Behaviour, Radboud University, ²Oxford Centre for Human Brain Activity, University of Oxford, ³School of Psychology, University of Birmingham

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C44 Compensation or restoration: Optimizing tDCSenhanced visual working memory in older adults

Hector Arciniega¹, Filiz Gözenman², Marian Berryhill¹; ¹University of Nevada, Reno. ²Yasar University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C45 Effects of emotion, load, distraction, and dopamine tone on working memory and associated neural function in veterans with mTBI and/or PTSD

Michael Ballard^{1,2}, Taylor Vega^{1,2}, Andrew Kayser^{1,2}; ¹Weill Institute for Neurosciences, University of California, San Francisco, ²VA Northern California Health Care System

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C46 Exploring the Relationships Between Early-Life Environments of Scarcity, Parenting Style, and Working Memory in Childhood: A Cross-Species Study

Stephen H. Braren¹, Rosemarie E. Perry¹, Cristina M. Alberini¹, Regina M. Sullivan², Clancy Blair¹; ¹New York University, ²New York University School of Medicine

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C47 EEG dissociates acute brain injury patients from controls during visuospatial working memory

James Broadway¹, Rebecca Rieger¹, Kevin Wilson¹, Andrew Mayer², James Cavanagh¹; ¹University of New Mexico, ²Mind Research Network Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C48 Predicting Individual tDCS-Linked Working Memory Benefits Through Resting-State fMRI

Adelle Cerreta¹, Ryan Mruczek², Marian Berryhill¹; ¹University of Nevada, Reno, ²Worcester State University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C49 Competitive and independent encoding of episodic versus procedural memory

Sungshin Kim¹, Joel Voss; ¹Medical Social Sciences, Feinberg School of Medicine

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster C50 Attention modulates relative lateralization of N170 for single letters in Japanese Hiragana

Tomoki Uno¹, Ayumi Seki², Tetsuko Kasai²; ¹Graduate School of Education, Hokkaido University, ²Faculty of Education, Hokkaido University

Topic Area: LANGUAGE: Lexicon

Poster C51 Second-language reading proficiency is related to changes in N170s?

Osamu Takai¹, Anthony Herdman¹; ¹University of British Columbia Topic Area: LANGUAGE: Lexicon

Poster C52 Cross-language interaction in auditory and visual word processing in bilinguals: Electrophysiological and behavioral evidence

Katharine Donnelly Adams¹, Fatemeh Abdollahi¹, Ping Li¹, Janet G. van Hell¹; ¹The Pennsylvania State University

Topic Area: LANGUAGE: Lexicon

Poster C53 Effects of Iconicity on Cross-modal Translation Priming in Hearing Learners of American Sign Language and Deaf Native Signers: An ERP Study

Megan Mott¹, Katherine J. Midgley¹, Phillip J. Holcomb¹, Karen Emmorey¹; ¹San Diego State University

Topic Area: LANGUAGE: Lexicon

Poster C54 Neural correlates for naming disadvantage of the dominant language in bilingual word production

Yongben Fu¹, Di Lu¹, Chunyan Kang¹, Junjie Wu¹, Fengyang Ma², Guosheng Ding¹, Taomei Guo¹; ¹Beijing Normal University, ²University of Cincinnati

Topic Area: LANGUAGE: Lexicon

Poster C55 Electrophysiological evidence of the cognate facilitation effect during bilingual visual word recognition

Karla Orihuela¹, Hélène Giraudo¹, Noémie te Rietmolen¹, Albert Kim²; ¹University of Toulouse, ²University of Colorado, Boulder

Topic Area: LANGUAGE: Lexicon

Poster C56 A Cross Linguistic Comparison of Category- and Letter- Fluency: Mandarin and English

Nancy Eng^{1,2}, Melissa Salzberg¹, Jet Vonk^{1,2}, Nakyung Yoo¹; ¹Hunter College of CUNY, ²The Graduate Center of CUNY

Topic Area: LANGUAGE: Lexicon

POSTER C57 EARLY FEEDBACK FROM FRONTAL TO OCCIPITO-TEMPORAL CORTEX DURING VISUAL WORD RECOGNITION

Yu Li¹, Sachiko Kinoshita¹, Paul Sowman¹, Anne Castles¹; ¹Macquarie University

Topic Area: LANGUAGE: Lexicon

Poster C58 Phonological and semantic priming in American Sign Language: An ERP study

Brittany Lee^{1,2}, Katherine J. Midgley¹, Phillip J. Holcomb¹, Karen Emmorey¹, Gabriela Meade^{1,2}; ¹San Diego State University, ²University of California, San Diego

Topic Area: LANGUAGE: Lexicon

Poster C59 Bilingual aphasia: exploring the relationship between language control and lexical access

Desiree Sasunian¹, Pia Etchegoin¹, Kathryn Tidaback¹, Kareem Darwiche¹, Teresa Gray¹; ¹San Francisco State University

Topic Area: LANGUAGE: Lexicon

Poster C60 Blind individuals do not develop a reading area in ventral occipitotemporal cortex

Judy Kim¹, Shipra Kanjlia¹, Lotfi Merabet², Marina Bedny¹; ¹Johns Hopkins

University, ²Harvard Medical School Topic Area: LANGUAGE: Lexicon

Poster C61 Connectivity of the language system revealed by direct brain stimulation during awake neurosurgery

Bram Diamond¹, Frank E. Garcea^{1,2}, Benjamin Chernoff¹, Raouf Belkhir¹, Alex Teghipco¹, Susan O. Smith³, Eduardo Navarrete⁴, Webster H. Pilcher³, Bradford Z. Mahon^{1,2,3}; ¹University of Rochester, ²Center for Visual Science, ³University of Rochester Medical Center, ⁴University of Padova

Topic Area: LANGUAGE: Lexicon

Poster C62 Multivariate analyses reveals distributed and overlapping neural representations of bilinguals' first and second language

Emily S. Nichols¹, Marc F. Joanisse¹, Gao Yue², Liu Li²; ¹The University of Western Ontario, ²Beijing Normal University

Topic Area: LANGUAGE: Lexicon

Poster C63 Multilayer neural network modeling of speech envelope prediction errors

Jona Sassenhagen¹, Benjamin Gagl¹, Christian J. Fiebach¹; ¹University of Frankfurt

Topic Area: LANGUAGE: Other

Poster C64 Predicting tonal language learning aptitude from individual differences in brain morphology and microstructure

Dimitrios Donavos¹, Anita Bowles^{1,2}; ¹University of Maryland Center for Advanced Study of Language, ²Rosetta Stone, Ltd.

Topic Area: LANGUAGE: Other

Poster C65 Reading naturalistic text alters the information processing timeline: Evidence from concurrent self-paced reading and electroencephalography

Shannon McKnight¹, Albert Kim¹; ¹University of Colorado, Boulder

Topic Area: LANGUAGE: Other

Poster C66 Thinning of the Left Middle Temporal Gyrus is Associated with Word Retrieval Difficulties in Tempora

Clara Yoon¹, Victor Kang¹, Joo Sung Yi¹; ¹New York University

Topic Area: LANGUAGE: Other

Poster C67 ERP Brain Responses to Emoji-Generated Irony

Benjamin Weissman¹, Darren Tanner¹; ¹University of Illinois at Urbana-Champaign

Topic Area: LANGUAGE: Other

Poster C68 Magnitude Processing in Bilingual Developmental Dyscalculia

Alejandro Martinez¹, Elena Salillas¹; ¹Basque Center on Cognition Brain and Language (BCBL)

Topic Area: LANGUAGE: Other

Poster C69 The influence of the cortical thickness of Planum Temporale on word tone processing in Swedish native speakers

Andrea Schremm¹, Mikael Novén¹, Merle Horne¹, Mikael Roll¹; ¹Lund University

Topic Area: LANGUAGE: Other

Poster C70 Involvement of the visuo-orthographic system during spoken sentence processing

Samuel Planton¹, Valérie Chanoine², Julien Sein³, Jean-Luc Anton³, Bruno Nazarian³, Christophe Pallier⁴, Chotiga Pattamadilok¹; ¹Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France, ²Labex Brain and Language Research Institute, France, ³Aix Marseille Univ, CNRS, Centre IRMf, INT UMR 7289, Marseille, France, ⁴INSERM-CEA, Cognitive Neuroimaging Unit, Neurospin Center, Gif-sur-Yvette, France

Topic Area: LANGUAGE: Other

Poster C71 Neural correlates of referential processing: Eventrelated potentials for ambiguity versus resolution

Les Sikos¹, Harm Brouwer¹, Matthew Crocker¹; ¹Saarland University Topic Area: LANGUAGE: Other

Poster C72 Language Improvement in Aphasia Therapy is Reflected by the Mismatch Negativity to Meaningful and Meaningless Constructions, but not by That to Ungrammatical Strings

Guglielmo Lucchese¹, Friedemann Pulvermüller^{1,2}, Benjamin Stahl^{1,3}, Felix Dreyer¹, Bettina Mohr⁴; ¹Brain Language Laboratory, Freie Universtät Berlin, 14195, Berlin Germany, ²Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany, ³Charité Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin Germany, ⁴Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203, Berlin Germany

Topic Area: LANGUAGE: Other

Poster C73 A brain index of semantic prediction

Luigi Grisoni¹, Natalie McCormick Miller^{1,2}, Friedemann Pulvermüller^{1,2};
¹Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, 14195 Berlin, Germany, ²Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany Topic Area: LANGUAGE: Semantic

Poster C74 Readers select perspective in comprehension independent of pronoun: evidence from fMRI during narrative comprehension

Franziska Hartung^{1,2}, Peter Hagoort^{2,3}, Roel M. Willems^{3,4}; ¹University of Pennsylvania, ²Max Planck Institute for Psycholinguistics, ³Donders Institute for Brain, Cognition, and Bahavior, ⁴Center for Language Studies, Radboud University

Topic Area: LANGUAGE: Semantic

Poster C75 Semantic grounding in a neurocomputational model including realistic connectivity and spiking neurons

Rosario Tomasello^{1,2}, Max Garagnani^{1,4}, Thomas Wennekers³, Friedemann Pulvermüller^{1,2}; ¹Freie Universität Berlin, Brain Language Laboratory, ²Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, ³University of Plymouth, Centre for Robotics and Neural Systems (CRNS), ⁴Goldsmiths, University Of London

Topic Area: LANGUAGE: Semantic

Poster C76 The neural basis of the integration of speech and gesture: A brain stimulation approach

wanying zhao¹, Kevin Riggs¹, Igor Schindler¹, Henning Hollo¹; ¹University of

Topic Area: LANGUAGE: Semantic

Poster C77 A causal role of motor systems in processing concrete and abstract nouns? – Evidence from voxel based lesion symptom mappings in brain tumor patients.

Felix R. Dreyer¹, Thomas Picht², Dietmar Frey², Friedemann Pulvermüller^{1,3}; ¹Freie Universität Berlin, ²Charité Hospital Berlin, ³Berlin School of Mind and Brain

Topic Area: LANGUAGE: Semantic

Poster C78 Semantic Word Category Deficits in Neurodegenerative Diseases

Zubaida Šhebani¹.², Karalyn Patterson¹.³, Peter J. Nestor⁴, Lara Z. Diaz-de-Grenu³.⁵, Kate Dawson³, Friedemann Pulvermuller¹.⁶,²; ¹Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, ²Linguistics Department, College of Humanities and Social Sciences, United Arab Emirates University, UAE, ³Department of Clinical Neurosciences, University of Cambridge, ⁴German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany, ⁵Tecnalia Research and Innovation Center, Health Division, Neurotechnology Unit, Bizkaia Technology Park, Derio, Spain, ⁶Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany, ¬Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany

Topic Area: LANGUAGE: Semantic

Poster C79 Effective Connectivity of Aphasic Bilingual Semantic Processing

Robert Buckshaw II¹, Ērin Meier¹, Swathi Kiran¹; ¹Boston University Topic Area: LANGUAGE: Semantic

Poster C80 Gesture Comprehension and Verbal Working Memory

Seana Coulson¹, Ying Choon Wu¹, Megan Bardolph¹, Tania Delgado¹; ¹University of California, San Diego

Topic Area: LANGUAGE: Semantic

Poster C81 The neural representation of verbs and nouns meaning

Giulia V. Elli¹, Connor Lane¹, Marina Bedny¹; ¹Johns Hopkins University Topic Area: LANGUAGE: Semantic

Poster C82 Neuroimaging Evidence for Individual Differences in L1 Lexical Semantic Processing

Lisa Beck¹, Lyam Bailey², Morgan Johnson³, Ella C. Dubinsky⁴, Kaitlyn M. Tagarelli⁵, Timothy Bardouille⁶, Aaron J. Newman⁷; ¹Dalhousie University Topic Area: LANGUAGE: Semantic

Poster C83 Investigating semantic representations in brain with fMRI and LSA

Sverker Sikström¹, Johan Mårtensson¹; ¹Department of psychology, Lund university

Topic Area: LANGUAGE: Semantic

Poster C84 "I deny my expectations. Even so, I predict": Differential electrophysiological effects of concession and result connectives in discourse comprehension

Edward Alexander¹, Einat Shetreet², Connie Choi¹, Ming Xiang³, Gina Kuperberg^{1,4,5}; ¹Department of Psychology, Tufts University, ²Department of Linguistics, Tel Aviv University, ³Department of Linguistics, University of Chicago, ⁴MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, ⁵Department of Psychiatry, Massachusetts General Hospital Topic Area: LANGUAGE: Semantic

Poster C85 Age-related differences in the functional connectivity of the medial temporal lobe support successful memory encoding

Lingfei Tang¹, Andrea Shafer¹, Ryan Liddane¹, Hager Alkhafaji¹, Noa Ofen¹; ¹Wayne State University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C86 Fixation reinstatement supports visuospatial memory in older adults: An eye movement compensation effect.

Jordana Wynn^{1,2}, Rosanna Olsen², Malcolm Binns², Bradley Buchsbaum^{1,2},

Jennifer Ryan^{1,2}; ¹Department of Psychology, University of Toronto, ²Rotman Research Institute, Baycrest Hospital

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C87 The role of prior knowledge during automatic and controlled memory retrieval in younger and older adults

Tarek Amer^{1,2}, Kelly S. Giovanello³, Cheryl L. Grady^{1,2}, Lynn Hasher^{1,2}; ¹University of Toronto, ²Rotman Research Institute, ³University of North Carolina at Chapel Hill

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C88 Age effects on resting state functional connectivity preceding and following an associative learning task.

gwenaelle catheline^{1,2}, manon Edde¹, georges Di-scala¹, bixente Dilharreguy¹, sandra Chanraud^{1,2}; ¹INCIA, UMR CNRS 5287, Université de Bordeaux, Bordeaux, France, ²EPHE, PSL Research University.

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C89 Normal older adults' performance on a famous faces task is related to gray matter thickness and amyloid-beta in ApoE4 carriers

Rachel Bell¹, Stephanie L. Leal¹, Taylor Mellinger¹, Kaitlin Swinnerton¹, William J. Jagust¹; ¹University of California, Berkeley Topic Area: LONG-TERM MEMORY: Development & aging

Poster C90 Age-related differences in time course of brain activation and connectivity during feedback-based associative learning.

Sandra CHANRAUD¹¹², Georges DI-SCALA¹, Maud DUPUY¹, Bixente DILHARREGUY¹, Michèle ALLARD¹.²,3; ¹INCIA - Université de Bordeaux, UMR 5287- CNRS, Bordeaux cedex, France, ²EPHE, PSL Research University, Bordeaux, France, ³CHU de Bordeaux, Bordeaux, France Topic Area: LONG-TERM MEMORY: Development & aging

Poster C91 Associations between region-specific structural brain integrity and cognitive abilities in old age: A multivariate, longitudinal, structural equation modeling approach

Sandra Düzel¹, Andreas Brandmaier^{1,2}, Simone Kühn³, Ulman Lindenberger^{1,2}; ¹Max Planck Institute for Human Development, Berlin, Germany, ²Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, ³University Clinic Hamburg-Eppendorf, Hamburg, Germany

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C92 Aging effects on perceptual and conceptual memory: transformations from short-term to long-term memory

Anisha Adke¹, Caitlin R. Bowman¹, Dagmar Zeithamova¹; ¹University of Oregon

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C93 An electocorticography (ECoG) study of memory formation in children

Qin Yin¹, Lingfei Tang¹, Mo Malik¹, Andrea Shafer¹, David Chen¹, Eishi Asano^{1,2}, Noa Ofen¹; ¹Wayne State University, ²Children's Hospital of Michigan

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C94 Using functional magnetic resonance imaging to guide positron emission tomography analyses in mild cognitive impairment.

Shaina L. Garrison¹, Chris M. Foster², Daniel Kaufer¹, Kathleen Welsh-Bohmer³, David Lalush^{1,4}, Kelly S. Giovanello¹; ¹University of North Carolina at Chapel Hill, ²University of Texas at Dallas, ³Duke University, ⁴North Carolina State University

Topic Area: LONG-TERM MEMORY: Development & aging

Poster C95 Disentangling interactions between context switches and the spacing effect

Lynn Lohnas¹, Lila Davachi¹; ¹New York University Topic Area: LONG-TERM MEMORY: Episodic

Neurobehavioural characteristics of limbic encephalitis associated with voltage-gated potassium channel complex antibodies.

Clare Loane¹, Adriana Roca-Fernandez^{1,2}, Carmen Lage-Martinez^{1,3}, Samrah Ahmed¹, Christopher R Butler¹; ¹Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK., ²Oxford Multiple Sclerosis and Neuromyelitis Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK., 3Cognitive Disorders Unit, Hospital Universitario Margues de Valdecilla, Santander, Spain.

Topic Area: LONG-TERM MEMORY: Episodic

Confidence in recognition memory can be inferred from response pressure without explicit instruction

Josephine A. Urquhart¹, Akira R. O'Connor¹; ¹University of St Andrews

Topic Area: LONG-TERM MEMORY: Episodic

Poster C98 Characterizing remote memory in posterior cortical atrophy

Samrah Ahmed¹, Muireann Irish^{2,3,4}, Clare Loane¹, Ian Baker⁵, Masud Husain¹, Sian Thompson⁵, Clare Mackay¹, Giovanna Zamboni¹, David Foxe^{2,3,4}, John Hodges^{2,3,4}, Olivier Piguet^{2,3,4}, Christopher Butler¹; ¹University of Oxford, ²ARC Centre of Excellence in Cognition and its Disorders, ³Neuroscience Research Australia, ⁴The University of New South Wales, ⁵Oxford University Hospitals NHS Trust, John Radcliffe Hospital

Topic Area: LONG-TERM MEMORY: Episodic

Goal-invariant and goal-dependent retrieval Poster C99 success effects during conceptual and perceptual episodic recollection

Joseph P. Hennessee¹, Anthony D. Wagner², Jesse Rissman¹; ¹University of California, Los Angeles, ²Stanford University

Topic Area: LONG-TERM MEMORY: Episodic

Brain activity underlying reactivation of episodic Poster C100 memories following lesion of the right temporal lobe

Corinna Haenschel¹, Nareq Khachatoorian¹, Danai Dima¹, Shona Illingworth², Catherine Loveday³, Martin Conway¹; ¹City University London, London, UK, ²University of Kent, UK, ³University of Westminster, London UK

Topic Area: LONG-TERM MEMORY: Episodic

Poster C101 Resting-state medial temporal lobe connectivity with reward centers predicts how motivation impacts learning

Lea E. Frank¹, Alison R. Preston², Dagmar Zeithamova¹; ¹University of Oregon, ²University of Texas at Austin

Topic Area: LONG-TERM MEMORY: Episodic

Poster C102 Measuring the impact of short-term training on brain networks using resting state connectivity

Adam Steel^{1,2}, Cibu Thomas¹, Aaron Trefler¹, Gang Chen³, Chris Baker¹; ¹Laboratory of Brain and Cognition, National Institutes of Health, ²Oxford Centre for Functional MRI of the Brain, University of Oxford, 3Statistics and Computing Core, National Institutes of Health

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C103 The consolidation of explicit, but not implicit probabilistic sequence learning is associated with anterior delta and theta activity of post-learning Non-REM sleep

Zsofia Zavecz^{1,2}, Peter Simor³, Karolina Janacsek^{1,2}, Kata Horváth^{1,2}, Csenge Török^{1,2}, Noémi Éltető¹, Orsolya Pesthy¹, Dezso Nemeth^{1,2}; ¹Eötvös Loránd University, Budapest Hungary, ²Hungarian Academy of Sciences,

Budapest, Hungary, ³Budapest University of Technology and Economics, Budapest, Hungary

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C104 Statistical learning: Manipulation of timing in the reconsolidation phase

Csenge Török^{1,2}, Karolina Janacsek^{1,2}, Dezso Nemeth^{1,2}; ¹Hungarian Academy of Sciences, Institute of Cognitive Neuroscience and Psychology, ²Eotvos Lorand University, Institute of Psychology

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C105 Statistical learning and explicit sequence-learning are differentiated with ERPs during task automatization

Adam Takacs¹, Andrea Kóbor², Zsofia Kardos^{3,4}, Karolina Janacsek^{1,3}, Kata Horvath^{1,3}, Dezso Nemeth^{1,3}; ¹Institute of Psychology, Eötvös Loránd University, Budapest, Hungary, ²Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary, ³Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary, ⁴Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C106 Knowledge of statistical regularities undergoes similar consolidation in explicit and implicit probabilistic learning

Kata Horváth^{1,2}, Csenge Török^{1,2}, Balázs Török^{1,2}, Orsolya Pesthy¹, Karolina Janacsek^{1,2}, Dezso Nemeth^{1,2}; ¹Eötvös Loránd University, Budapest, Hungary, ²Hungarian Academy of Sciences, Budapest, Hungary

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C107 Motor learning deficits in cannabis users

Shikha Prashad¹, Elizabeth Dedrick¹, Francesca Filbey¹; ¹University of Texas at Dallas

Topic Area: LONG-TERM MEMORY: Skill learning

Poster C108 Additive effects of two dopamine modulating genes on feedback-based cognitive sequence learning in younger adults

Sylvia Larson¹, Angelica Boeve¹, Mark Gluck², Jessica Petok¹; ¹Saint Olaf College. ²Rutgers University

Topic Area: LONG-TERM MEMORY: Skill learning

Neurophysiological Effects of the Presence of an Irrelevant Visual Stimulus on Auditory Neural Activity

Kristina Backer¹, Andrew S. Kessler¹, Laurel A. Lawyer¹, Lee M. Miller¹, David P. Corina¹; ¹University of California, Davis

Topic Area: PERCEPTION & ACTION: Audition

Poster C110 The Effect of Musicianship and Instrument Type on the Processing of Temporal Features for Speech

Anne Huntemer-Silveira¹, K.J. Jantzen¹, McNeel G. Jantzen¹; ¹Western Washington University

Topic Area: PERCEPTION & ACTION: Audition

Cortical Networks for Intelligible Speech Identified Poster C111 with Reverse Correlation

Jonathan Venezia¹, Gregory Hickok², Virginia Richards²; ¹VA Loma Linda Healthcare System, ²University of California, Irvine

Topic Area: PERCEPTION & ACTION: Audition

Poster C112 Music and the brain: A causal role for the right superior temporal gyrus in expert music ability

Frank Garcea^{1,2}, Benjamin Chernoff¹, Bram Diamond¹, Wesley Lewis¹, Samuel Tomlinson³, Alexander Teghipco¹, Raouf Belkhir¹, Susan Smith³, Jonathan Stone³, Elizabeth Marvin⁴, Webster Pilcher³, Bradford Mahon^{1,2,3};

¹Department of Brain and Cognitive Sciences, University of Rochester, USA, ²Center for Visual Science, University of Rochester, USA, ³Department of Neurosurgery, University of Rochester Medical Center, USA, ⁴Eastman School of Music, University of Rochester, USA

Topic Area: PERCEPTION & ACTION: Audition

Poster C113 Speech perception and attention in early bilingual adults and children

Hia Datta¹, Arild Hestvik², Valerie Shafer³; ¹Communication Sciences and Disorders, Molloy College, ²Linguistics and Cognitive Sciences, University of Delaware, ³Speech-Language-Hearing Sciences, The Graduate Center,

Topic Area: PERCEPTION & ACTION: Audition

Poster C114 Differential altered auditory electrocortical responses in young children with and without megalencephaly on the autism spectrum.

Rosanna De Meo^{1,2}, Sevan K. Haroontonian¹, Christine Wu Nordahl², David G. Amaral², Susan M. Rivera^{1,2,3}, Clifford Saron^{1,2}; ¹Center for Mind and Brain, University of California at Davis, Davis, CA, ²MIND Institute, University of California at Davis School of Medicine, Sacramento, CA, 3Department of Psychology, University of California at Davis, Davis, CA

Topic Area: PERCEPTION & ACTION: Audition

Involvement or irrelevance: Representation of the Poster C115 self vs. other in joint piano performance recorded by dual-EEG

Madeline Huberth¹, Tysen Dauer¹, Iran Roman¹, Chryssie Nanou¹, Wisam Reid¹, Nick Gang¹, Matthew Wright¹, Takako Fujioka¹; ¹Stanford University

Topic Area: PERCEPTION & ACTION: Audition

A network for auditory-motor coupling: Poster C116 comparison between musicians and nonmusicians

Shoji Tanaka¹, Eiji Kirino^{2,3}; ¹Sophia University, ²Juntendo University, ³Shizuoka Hospital

Topic Area: PERCEPTION & ACTION: Audition

Poster C117 Distinct prefrontal responses to salient distractors during perception and goal-directed action

Dan McCarthy¹, Christine Gamble¹, Joo-Hyun Song^{1,2}; ¹Department of Cognitive, Linguistic & Psychological Sciences, Brown University, ²Brown Institute for Brain Science, Brown University

Topic Area: PERCEPTION & ACTION: Other

What do the power and time development of EEG oscillations tell us? Time frequency analysis and event related synchronization in dance experts' perception of music.

Mari-Anne Rosario¹, Hiroko Nakano¹; ¹Saint Mary's College of California, Moraga CA USA

Topic Area: PERCEPTION & ACTION: Other

Poster C119 Functional parcellation of the planum temporale

Alex Teghipco¹, Prantik Kundu^{2,3}, Bradley R. Buchsbaum⁴, Peter A. Bandettini⁵, Gregory Hickok¹; ¹University of California, Irvine, ²Icahn School of Medicine at Mt. Sinai, ³University of Cambridge, ⁴University of Toronto, ⁵National Institute of Mental Health

Topic Area: PERCEPTION & ACTION: Other

Poster C120 The Influence of Visual Cues on Nonsymbolic Number Comparison and Their Relation to Math Competency

Eric Wilkey¹, Jordan C. Barone¹, Michele M. M. Mazzocco², Stephan E. Vogel³, Gavin R. Price¹; ¹Peabody College, Vanderbilt University, ²Institute of Child Development, University of Minnesota, ³Institute of Psychology, University of Graz, Austria

Topic Area: PERCEPTION & ACTION: Other

Poster C121 pMTG and dIPFC involvement in top-down contextual effects during the perception of other people's actions

Lucia Amoruso¹, Alessandra Finisguerra¹, Cosimo Urgesi^{1,2}; ¹University of Udine, Italy, ²Scientific Institute (IRCCS) Eugenio Medea

Topic Area: PERCEPTION & ACTION: Other

Poster C122 Large scale comparison of retinotopic and category selective maps throughout human visual cortex

Edward Silson¹, Iris Groen¹, Caitlin Van Wicklin¹, Chris Baker¹; ¹Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health

Topic Area: PERCEPTION & ACTION: Vision

Covert simulation of others' actions in real-time Poster C123

Julia Hamilton¹, Aleksandra Sherman¹; ¹Occidental College

Topic Area: PERCEPTION & ACTION: Vision

Poster C124 Perception of size and local/global stimulus features during action preparation: an electrophysiological investigation.

Xavier Job¹, Jan de Fockert¹, José van Velzen¹; ¹Goldsmiths, University of London

Topic Area: PERCEPTION & ACTION: Vision

Poster C125 Native language facilitates conscious visual perception

Martin Maier^{1,2}, Rasha Abdel Rahman^{1,2}; ¹Humboldt-Universität zu Berlin, ²Berlin School of Mind and Brain

Topic Area: PERCEPTION & ACTION: Vision

Differences in activation patterns connected to the Poster C126 level of arousal evoked by watching dynamic stimuli - fMRI study results

Pamela Sobczak¹, Maria Bierzynska², Anna Kozak³, Maksymilian Bielecki⁴, Keerthana Karunkaran⁵, Bharat Biswal⁶, Jan Strelau⁷, Małgorzata Kossut⁸; ¹Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland, ²Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland, ³Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland, 4Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland, 5Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA, ⁶Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA, ⁷Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland, 8Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland

Topic Area: PERCEPTION & ACTION: Vision

Making sense of objects lying about: How contextual objects shape brain activity during action observation

Nadiya El-Sourani^{1,2}, Ima Trempler^{1,4}, Moritz F. Wurm³, Gereon R. Fink^{2,4}, Ricarda I. Schubotz^{1,2}; ¹University of Münster, Germany, ²University Hospital Cologe, Germany, ³University of Trento, Rovereto TN, Italy, ⁴Research Centre Jülich, Germany

Topic Area: PERCEPTION & ACTION: Vision

Poster C128 fMRI investigation of part-whole contingencies using 2-D shapes: A partial least squares analysis

Padmapriya Muralidharan¹, Anthony Cate¹; ¹Virginia Polytechnic Institute and State University

Topic Area: PERCEPTION & ACTION: Vision

Poster C129 Communicability of cerebral activities: shaping similar percepts across individuals

Shahin Tavakol; 1

Topic Area: PERCEPTION & ACTION: Vision

Poster C130 The effect of border-ownership on perception of three dimensional object

Tomonori Ishizaki¹, Masayuki Kikuchi¹; ¹Tokyo University of Technology

Topic Area: PERCEPTION & ACTION: Vision

Poster C131 Scenes shape the neural representation of objects

Talia Brandman¹, Marius Peelen¹; ¹University of Trento

Topic Area: PERCEPTION & ACTION: Vision

Poster C132 Ocular measures provide mechanistic insights into the malleability of reasoning skills

Belen Guerra-Carrillo¹, Maria Eckstein¹, Pooya Ganjali¹, Silvia A. Bunge¹; ¹University of California at Berkeley

Topic Area: THINKING: Reasoning

Poster C133 Cognitive models of realistic belief updating

Nikki Marinsek¹, Michael B. Miller¹; ¹University of California, Santa Barbara

Topic Area: THINKING: Reasoning

Poster C134 Neural networks of logical reasoning and the influence of belief system

Mohammadreza Bonyadi¹, Maryam Ziaei¹, David C. Reutens¹; ¹Centre for Advanced Imaging, the University of Queensland, St. Lucia, Brisbane, Australia

Topic Area: THINKING: Reasoning

Poster C135 Intelligence and modular brain networks: The TPJ's involvement in inter-modular communication is associated with general intelligence

Kirsten Hilger^{1,2}, Matthias Ekman³, Christian Fiebach^{1,2}, Ulrike Basten¹;
¹Goethe University Frankfurt, Frankfurt am Main, Germany, ²IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main, Germany, ³Donders Institute for Brain, Cognition, and Behaviour, Radboud University Niimegen. The Netherlands

Topic Area: THINKING: Reasoning

Poster C136 Neural representations of numerosity support the acquisition of counting in preschool children

Alyssa Kersey¹, Jessica Cantlon¹; ¹University of Rochester

Topic Area: THINKING: Reasoning

Poster C137 Activation of Paired Associates Predicts Cue Revaluation in Causal Learning

Sean O'Bryan¹, Evan Livesey², Tyler Davis¹; ¹Texas Tech University, ²University of Sydney

Topic Area: THINKING: Reasoning

Poster C138 Does the brain have a domain-general mechanism for representing mental models?

Katherine L. Alfred¹, Andrew C. Connolly¹, Joshua S. Cetron¹, David J. M. Kraemer¹; ¹Dartmouth College

Topic Area: THINKING: Reasoning

Poster C139 The Role of the Prefrontal Cortex in Inductive Reasoning: An fNIRS Study

Layla Unger¹, Jaeah Kim¹, Theodore J. Huppert², Julia Badger³, Anna V. Fisher¹; ¹Carnegie Mellon University, ²University of Pittsburgh, ³University of Oxford

Topic Area: THINKING: Reasoning

Poster C140 Overlapping neural representations of magnitude support understanding nonsymbolic and symbolic fractions

John Binzak¹, Elizabeth Toomarian¹, Edward Hubbard¹; ¹University of Wisconsin - Madison

Topic Area: THINKING: Reasoning

Poster C141 Training Spatial Thinking in the High School Classroom Impacts Cognitive and Neural Correlates of Verbal Relational Reasoning

Emily Peterson^{1,2}, Robert Kolvoord¹, David Kraemer³, Adam Weinberger², David Uttal⁴, Dan Goldman², Adam Green²; ¹James Madison University, ²Georgetown University, ³Dartmouth College, ⁴Northwestern University

Topic Area: THINKING: Reasoning

Poster Session D

Poster D1 Large-scale network fMRI connectivity increases caused by autobiographical memory retrieval

Kristen Warren¹, Sungshin Kim¹, Molly Hermiller¹, Aneesha Nilakantan¹, Jon O'Neil¹, Robert Palumbo¹, Joel Voss¹; ¹Northwestern University

Topic Area: LONG-TERM MEMORY: Other

Poster D2 Structural and functional evidence for thalamic nucleus reuniens in the human brain

Zachariah Reagh¹, Aaron Mattfeld², Timothy Allen², Maria Montchal¹, Michael Yassa¹; ¹University of California, Irvine, ²Florida International University

Topic Area: LONG-TERM MEMORY: Other

Poster D3 Is this my rubber ducky? Does sleep benefit memory specificity or memory generalization?

Sarah Witkowski¹, Leonardo E. Dionisio¹, Jessica D. Creery¹, Ken A. Paller¹;
¹Northwestern University

Topic Area: LONG-TERM MEMORY: Other

Poster D4 Prevalence of mild cognitive impairment and dementia in a population of adults over 60 years old in El Salvador

Jonathan V. Hernández¹; ¹Universidad de El Salvador

Topic Area: LONG-TERM MEMORY: Other

Poster D5 Chronic Treatment with Bean Phosphatidyl-Serine Ameliorates Learning and Memory in TMT-induced Cognitive Deficit rats

Minsook Ye¹, dae-hyun hahm¹, hye-jung lee¹, insop shim¹; ¹kyung hee university

Topic Area: LONG-TERM MEMORY: Other

Poster D6 Functional and structural characteristics of attentional networks predict attention and consciousness interactions

Ana B. Chica¹, Michel Thiebaut de Schotten², Paolo Bartolomeo², Pedro M. Paz-Alonso³; ¹University of Granada, ²CNRS U7225, Inserm U1127, ³BCBL, Basque Center on Cognition, Brain and Language

Topic Area: ATTENTION: Spatial

Poster D7 Flexible biasing of visuospatial attention works through both target facilitation and distractor suppression

Kerstin Unger¹, Rebecca Waugh¹, Michael S. Worden¹; ¹Brown University, Department of Neuroscience

Topic Area: ATTENTION: Spatial

Poster D8 Somatic symptoms and exogenous attention: an ERP study investigating modality specificity

Bettina Forster¹, Maayan Karlinski¹, Alexander Jones²; ¹City, University of London, ²Middlesex University, London

Topic Area: ATTENTION: Spatial

Poster D9 ERP evidence of increased distractor salience AND suppression in psychopathic personality (target detection is unimpaired)

Patrick Carolan¹, John J. McDonald¹, Mario Liotti; ¹Simon Fraser University Topic Area: ATTENTION: Spatial

Poster D10 Brain Structures Modulating Alpha Oscillations in Anticipatory Spatial Visual Attention: A Simultaneous EEG-fMRI Study

Mingzhou Ding¹, Yuelu Liu², Jesse Bengson², Haiqing Huang¹, George R Mangun²; ¹University of Florida, ²University of California at Davis Topic Area: ATTENTION: Spatial

Poster D11 Cortical thickness and global/local visual abilities in children

Nicolas Poirel^{1,2}, Grégory Simon¹, Katell Mevel¹, François Orliac¹, Sonia Dollfus^{3,4}, Olivier Houdé^{1,2}, Carole Peyrin⁵, Grégoire Borst¹; ¹LaPsyDÉ, UMR 8240, CNRS, Université Paris Descartes, Université de Caen Normandie, France, ²Institut Universitaire de France (IUF), Paris, ³ISTS, UMR 6301, CNRS, CEA, Caen, France, ⁴CHU de Caen, Service de Psychiatrie, Centre Esquirol, Caen, France, ⁵LPNC, UMR 5105, CNRS, Université Pierre Mendès France, France

Topic Area: ATTENTION: Spatial

Poster D12 Sensory Activation as A Common Mechanism of Perceptual Pseudoneglect: Establishing Convergent and Discriminant Validity of Measures of Attention and Awareness

Jiaqing Chen¹, Matthias Niemeier^{1,2}; ¹University of Toronto Scarborough, ²Centre for Vision Research, York University

Topic Area: ATTENTION: Spatial

Poster D13 Dynamic coupling between the anterior cingulate and occipital alpha power during willed attentional control.

Jesse Bengson^{1,3}, Xiaoke Zhang², George Mangun³; ¹Sonoma State University, ²University of Delaware, ³University of California-Davis Topic Area: ATTENTION: Spatial

Poster D14 Can orienting endogenous spatial attention impact subjective awareness more than objective performance?

Marine Vernet¹, Savannah Lokey¹, Sara Ahmed¹, Shruti Japee¹, Valentinos Zachariou¹, Leslie Ungerleider¹; ¹Laboratory of Brain and Cognition, NIMH/NIH

Topic Area: ATTENTION: Spatial

Poster D15 Impact of acute lung injury on cognitive function in experimental mice

Amarjit Naura¹, Bijayani Sahu¹, Rajat Sandhir¹; ¹Department of Biochemistry, Panjab University, Chandigarh

Topic Area: ATTENTION: Spatial

Poster D16 Subthalamic nucleus stimulation impairs emotional conflict monitoring in Parkinson's Disease

Friederike Irmen^{1,2}, Julius Huebl², Henning Schroll^{2,4}, Gerd-Helge Schneider³, Andrea Kühn^{1,2,3}; ¹Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany, ²Department of Neurology, Charité University Medicine Berlin, Germany, ³Department of Neurosurgery, Charité University Medicine Berlin, Germany, ⁴Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D17 Evidence for error feedback control during intrinsic neuromodulation of emotion.

Keith Bush¹, Josh Cisler², Andrew James¹, Clint Kilts¹; ¹University of Arkansas for Medical Sciences, ²University of Wisconsin - Madison Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D18 Early and late inhibitory processes for emotional words: An ERP investigation

Regard Booy¹, Mario Liotti¹; ¹Simon Fraser University Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D19 Effects of interoceptive attention on emotional responses

Kamryn Taub¹, Sean Fannon¹; ¹Folsom Lake College

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D20 Neural basis of altruistic motivation towards ingroup soccer fans

Tiago Bortolini^{1,2}, Patrícia Bado^{1,2}, Sebastian Hoefle¹, Annerose Engel¹, Roland Zahn³, Jean-Claude Dreher⁴, Jorge Moll¹; ¹Cognitive and Behavioral Neuroscience Unit, D'Or Institute for Research and Education, Rio de Janeiro, ²Graduate Program in Morphological Sciences, Federal University of Rio de Janeiro, ³Institute of Psychiatry, Psychology & Neuroscience, Centre for Affective Disorders, King's College London, ⁴Neuroeconomics, Reward and Decision-making Team, Institut des Sciences Cognitives Marc Jeannerod, Centre National de la Recherche Scientifique

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D21 Medial prefrontal activation and liking / wanting judgements: Near-Infrared Spectroscopy (NIRS) study.

Eriko Matsumoto¹, Tomoya Kawashima¹.², Masahiro Zaitsu¹, Mathieu Lajante³, Tomoyuki Naito⁴; ¹Graduate School of Intercultural Studies, Kobe University, ²Japan Society for the Promotion of Science, ³Graduate School of Management (IGR – IAE), University of Rennes 1 & CREM (UMR 6211), ⁴Graduate School of Medicine, Osaka University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D22 The role of reward and punishment motivation in attention: an ERP investigation

Arzu Ozkan Ceylan¹, Xiaoqian Yu², Justin Burgess², Geoffrey F. Potts²;

¹Hacettepe University Department of Psychology,

²University of South Florida Department of Psychology

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D23 Modulating network dynamics using Theta Burst Stimulation to vIPFC

Cammie Rolle¹, Hersh Trivedi¹, Karen Monuszko¹, Andrew Yee¹, Amit Etkin¹;
¹Stanford University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D24 Emotion regulation constructs associated with variance of fear learning in Post-Traumatic Stress Disorder

Emily M. Hahn¹, Josh M. Cisler², G. Andrew James¹, Anthony A. Privratsky¹, Clinton D. Kilts¹; ¹Brain Imaging Research Center, Psychiatric Research Institute, University of Arkansas for Medical Sciences, ²Department of Psychiatry, University of Wisconsin- Madison

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D25 Neural Processing of Gender Stereotypes Separate Liberals and Conservatives

Adam Baker¹, Travis Baker², Genevieve Fuji Johnson³, Mario Liotti⁴; ¹Simon Fraser University, ²Rutgers University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster Session 2017 Annual Meeting

Poster D26 Deriving a neural representation of interpersonal guilt from multivariate brain patterns

Hongbo Yu^{1,6}, Leonie Koban^{2,3}, Luke Chang^{2,4}, Ullrich Wagner⁵, Patrik Vuilleumier³, Xiaolin Zhou¹, Tor Wager²; ¹Peking University, ²University of Colorado Boulder, ³University of Geneva, ⁴Dartmouth College, ⁵University of Münster, ⁶University of Oxford

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D27 **Sex Differences in Cooperation Decisions** Following Observed Affective Non-Verbal Social Interactions: An ERP Investigation

Matthew Moore¹, Illia Kuznietsov², Yuta Katsumi¹, Stephanie Kern¹, Qingying Zheng¹, Sanda Dolcos¹, Florin Dolcos¹; ¹University of Illinois at Urbana-Champaign, ²Eastern European National University

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster D28 Contributions of physiological arousal levels to performance under pressure: an fMRI study.

Noriya Watanabe^{1,2,3,4}, Mauricio R. Delgado¹; ¹Rutgers University, ²Japan Society for Promotion of Science, ³Nagoya University, ⁴National Institute of Information and Communications Technology

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

I Like the Way You Move: Increased Value of **Biological Motion in Individuals with Few Autistic Traits**

Elin Williams¹, Emily S Cross¹; ¹Bangor University

Topic Area: EMOTION & SOCIAL: Other

Poster D30 Mirroring multiple agents at the same time: An fMRI study

Emiel Cracco¹, Christian Keysers², Amanda Clauwaert¹, Marcel Brass¹; ¹Ghent University, ²Netherlands Institute for Neuroscience

Topic Area: EMOTION & SOCIAL: Other

Trait impulsivity is associated with functional Poster D31 connectivity of striatal-frontal circuits differentially in smokers and nonsmokers

Sufang Li¹, Xiaochu Zhang¹, Betty Jo Salmeron¹, Hong Gu¹, Elliot Stein¹, Yihong Yang¹; ¹Neuroimaging Research Branch, National Institute on Drug

Topic Area: EMOTION & SOCIAL: Other

Embodied empathy when judging crimes: Interindividual differences predict responses in somatosensory brain areas

Claudia Denke¹, Claudia Spies¹, Andreas Heinz², Andreas Ströhle², Michael Schaefer³; ¹Department of Anesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, ²Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, ³Medical School Berlin

Topic Area: EMOTION & SOCIAL: Other

Poster D33 Neurocomputational model of decision-making under social influence in cocaine addicts

Dongil Chung¹, Brooks King-Casas^{1,2,3}, George Christopoulos^{1,4,5}, Thomas Newton⁶, Richard De La Garza⁶, Pearl Chiu^{1,2,3}; ¹Virginia Tech Carilion Research Institute, ²Salem Veteran Affairs Medical Center, ³Virginia Tech, ⁴Nanyang Technological University, ⁵Culture Science Institute, ⁶Baylor College of Medicine & Michael E. DeBakey VA Medical Center Topic Area: EMOTION & SOCIAL: Other

Poster D34 Variations in alpha oscillatory power during rule

Paolo Medrano¹, Robert Ross¹; ¹University of New Hampshire Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D35 **Towards Optimal Competitive Behavior: Wins** versus Losses Determine Model-based versus Random Choices in Competitive Task Switching

Atsushi Kikumoto¹, Caitlin Corona¹, Joshua Karpf¹, Ulrich Mayr¹; ¹University of Oregon

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D36 Different Levels of Intrinsic Reward Modulate Cognitive Control Allocation While Performing a Naturalistic Behavioral Task

Richard Huskey¹, Britney Craighead², Michael Miller², Rene Weber²; ¹The Ohio State University, ²University of California Santa Barbara Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D37 Preparatory brain activity in dual-tasking

Marco Steinhauser¹, Robert Steinhauser¹; ¹Catholic University of Eichstätt-

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D38 Individual differences in mixing costs relate to general executive function

Louisa L. Smith¹, Naomi P. Friedman^{1,2}, Marie T. Banich¹; ¹Department of Psychology and Neuroscience, University of Colorado Boulder, ²Institute for Behavioral Genetics, University of Colorado Boulder

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D39 Causal evidence for learning-dependent frontal lobe contributions to cognitive control

Paul Muhle-Karbe¹, Jiefeng Jiang^{1,2}, Tobias Egner¹; ¹Duke University, ²Stanford University

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D40 Dynamics of hippocampal-prefrontal cortex interactions supporting event segmentation

Anna Jafarpour¹, Sandon Griffin¹, Jack J. Lin², Robert T. Knight¹; ¹University of California, Berkeley, California, ²University of California, Irvine, California Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Correlations between Gray-White Matter Blurring Poster D41 in Prefrontal Lobe Regions and Cognitive Set-Shifting in Healthy Adults

Carl Kim1, Joehyun Kim2, Sanford Kim3; 1St. Paul's School, 2Academy for Medical Science Technology, ³Horace Mann School

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Acute stress alters specific elements of cognitive Poster D42 flexibility in chronic cannabis users

Amy T Nusbaum¹, Paul Whitney¹, Carrie Cuttler¹, Alexander Spradlin¹, Ryan J McLaughlin¹, John Hinson¹, ¹Washington State University

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Effect of a dopaminergic antagonist on the drives Poster D43 to perform extraordinary roles

Tim Hadjis^{1,3}, Gifty Asare^{1,3}, Ana Fernandez-Cruz⁴, Ola Mohamed Ali^{1,3}, Ishan Walpolla^{1,3}, Julia Segal^{1,3}, Bruno Debruille^{1,2,3}; ¹Department of Psychiatry, McGill University, Montreal, QC, Canada, ²Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, ³Douglas Mental Health University Institute, Montreal, QC, Canada, ⁴McGill University Integrated Program in Neuroscience, Montréal, QC, Canada Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D44 The Neural Correlates of Proactive and Reactive Control in Bilingual Word Production

Junjie Wu¹, Yongben Fu¹, Chunyan Kang¹, Shuhua Li¹, Taomei Guo¹; ¹Beijing Normal University

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D45 Investigation of the changes in oscillatory power during rule switching after mild traumatic brain injury

Stephanie Barlow¹, Paolo Medrano¹, Daniel Seichepine², Robert Ross¹;
¹University of New Hampshire, ²University of New Hampshire-Manchester Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D46 Decoding rule modality in the human left inferior frontal gyrus

Michele Furlan¹, Laura Babcock², Antonino Vallesi¹; ¹Department of Neuroscience, University of Padua, Padua, Italy, ²Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

Topic Area: EXECUTIVE PROCESSES: Goal maintenance & switching

Poster D47 Visual field maps limit working memory precision

Xingyu Ding^{1,2}, Wayne E. Mackey¹, Clayton E. Curtis¹, Xiao-Jing Wang^{1,2}, Jonathan Winawer¹; ¹NYU, ²NYU Shanghai

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D48 Dynamic coding in PFC, FEF and LIP during a change localization working memory task

Dante Wasmuht¹, Eelke Spaak¹, Timothy J. Buschman², Earl K. Miller³, Mark Stokes¹; ¹Oxford University, ²Princeton University, ³Massachusetts Institute of Technology

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D49 Electrophysiological Correlates of Time-Based Prospective Memory in Individuals Across the Lifespan

Erin E. Aisenberg¹, Christy C. Chan¹, Sarah A. Raskin, Ph.D.¹; ¹Trinity College

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D50 sFROST: a Spiking Model of Working Memory Maintenance

Zachary Hutchinson¹, Sebastien Helie², Shawn W. Ell¹; ¹University of Maine, ²Purdue University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D51 Retroactive attention can protect multiple working memory contents from perceptual interference. Evidence by event-related EEG parameters in a retro-cuing paradigm

Anna Magdalena Barth¹, Edmund Wascher², Daniel Schneider³; ¹Leibniz Research Centre for Working Environment and Human Factors #1, 2, 3

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D52 The effects of individual variations in Contrast Sensitivity on Working Memory: An ERP study.

Cristina Filannino¹, Elliot Freeman¹, Andrew Parton², Corinna Haenschel¹; ¹City, University of London, ²Brunel University London

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D53 rTMS stimulation on right frontal and parietal reduces the impairment of object location changes on object identity change detection

PING YANG^{1,2,3,4}, LING LI^{1,2,3,4}; ¹Key Laboratory for NeuroInformation of Ministry of Education, ²High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, ³Center for Information in Medicine, ⁴University of Electronic Science and Technology of China

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D54 Variability in attentional control explains working memory impairments in ADHD

Sarah L. Karalunas¹, Brittany Alperin¹, Christiana Smith¹; ¹Oregon Health & Science University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster D55 The N170 ERP component differs in laterality, distribution, and association with continuous reading measures for deaf and hearing readers

Karen Emmorey¹, Katherine J. Midgley¹, Phillip J. Holcomb¹; ¹San Diego State University

Topic Area: LANGUAGE: Lexicon

Poster D56 When Script met Sally: An ERP study on the impact of lexical processing during the early encoding of handwritten words

Marta Vergara-Martinez¹, Manuel Carreiras², Eva Gutierrez-Sigut¹, Cristina Gil², Manuel Perea^{1,2}; ¹Universitat de Valencia, ²Basque Center on Cognition, Brain and Language (BCBL)

Topic Area: LANGUAGE: Lexicon

Poster D57 An ERP Investigation of Repetition Priming Effects in American Sign Language: Time-locking to Dynamic Stimuli

Katherine J. Midgley¹, Phillip J. Holcomb¹, Karen Emmorey¹; ¹San Diego State University

Topic Area: LANGUAGE: Lexicon

Poster D58 Word Frequency Effects During Ambient Language Processing

Laurel Lawyer¹, Andrew Kessler¹, Lee Miller¹, David Corina¹; ¹University of

California, Davis

Topic Area: LANGUAGE: Lexicon

Poster D59 Orthographic and phonological sensitivity in the reading network in skilled deaf readers.

Laurie S. Glezer¹, Jill Weisberg¹, Cindy O'Grady¹, Stephen McCullough¹, Katherine J. Midgley¹, Phillip J. Holcomb¹, Karen Emmorey¹; ¹San Diego State University

Topic Area: LANGUAGE: Lexicon

Poster D60 Bilingual lexical access is triggered by the intention to speak: behavioral and ERP/EEG evidence.

Francesca Martina Branzi¹, Emmanuel Biau², Clara Martin³, Albert Costa⁴; ¹University of Manchester, ²Maastricht University, ³Basque Center on Cognition, Brain and Language (BCBL), ⁴Pompeu Fabra University; ICREA, Institució Catalana de Recerca i Estudis Avançats

Topic Area: LANGUAGE: Lexicon

Poster D61 Investigating the Temporal Dynamics of Word Processing Using Multiband fMRI

Stephen Bailey¹, Laurie Cutting^{1,2}; ¹Vanderbilt Brain Institute, Vanderbilt University, ²Vanderbilt Kennedy Center, Vanderbilt University

Topic Area: LANGUAGE: Lexicon

Poster D62 Primary motor cortex is involved in online word learning: A combined TMS-MRI study

Nikola Vukovic¹, Yury Shtyrov¹; ¹Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Denmark Topic Area: LANGUAGE: Lexicon

Poster D63 No escape from morphological parsing in Semitic languages: The case of proper nouns in Arabic

Sami Boudelaa1; ¹Department of Linguistics, United Arab Emirates University Topic Area: LANGUAGE: Lexicon

Poster D64 Decoding phonology and lexicality from MEG data

Keith Doelling¹, Bijan Pesaran¹, David Poeppel²; ¹New York University, New York, NY, ²Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany Topic Area: LANGUAGE: Lexicon

Poster D65 Electrophysiological evidence of lexical competition from masked neighbor priming

Gabriela Meade^{1,2}, Katherine J. Midgley¹, Jonathan Grainger³, Phillip J. Holcomb¹, Karen Emmorey¹; ¹San Diego State University, ²University of California, San Diego, ³Aix-Marseille University & CNRS

Topic Area: LANGUAGE: Lexicon

Poster D66 High Definition-transcranial Direct Current Stimulation Enhances Statistical Learning

Julie Fratantoni¹, John Hart^{1,2}, Julia Evans¹; ¹The University of Texas at Dallas, ²The University of Texas Southwestern Medical Center

Topic Area: LANGUAGE: Lexicon

Poster D67 Phonological rules affect natural speech processing

Miriam Munoz¹, Michael Key², Ahren B. Fitzroy¹, Lisa D. Sanders¹; ¹University of Massachusetts. ²University of Maryland

Topic Area: LANGUAGE: Other

Poster D68 Electrophysiological effects of orthographic neighborhood in a letter detection task

Stephanie Osmond¹, Phillip J. Holcomb¹, Gabriela Meade^{1,2}; ¹San Diego State University, ²University of California, San Diego

T : A LANGUAGE OU

Topic Area: LANGUAGE: Other

Poster D69 Action representations depicted in gesture are modulated by motion-content in Parkinson's disease.

Stacey Humphries^{1,2}, Judith Holler³, Trevor Crawford⁴, Ellen Poliakoff²; ¹University of Pennsylvania, ²University of Manchester, ³Max Planck Institute for Psycholinguistics, ⁴University of Lancaster

Topic Area: LANGUAGE: Other

Poster D70 Categorization of Mandarin lexical tones in native and naïve non-native listeners: ERP evidence

Yang Gao¹, Darren Tanner¹, Jerome Packard¹, Chilin Shih¹; ¹University of Illinois at Urbana-Champaign

Topic Area: LANGUAGE: Other

Poster D71 Asymmetric associations between GABA and intrinsic auditory network activity

Samika Kumar¹, Srikantan Nagarajan¹, Fumiko Hoeft¹, Roeland Hancock¹; ¹University of California, San Francisco

Topic Area: LANGUAGE: Other

Poster D72 Individual Differences in Language Processing: A Hybrid ERP/SPR Investigation

Amalia Reyes¹, Darren S. Tanner¹; ¹University of Illinois at Urbana-Champaign

Topic Area: LANGUAGE: Other

Poster D73 The Ad hoc Perceptual Grouping of Speech Sounds in the Varying Standards Oddball Paradigm

Chao Han¹, Ryan Rhodes¹, Arild Hestvik¹; ¹University of Delaware

Topic Area: LANGUAGE: Other

Poster D74 Development of Language and Social Behaviors in School-Age Children with Autism

Nicholas $\bar{\text{W}}$ oo-VonHoogenstyn
1.2, Philip Lai³; ¹Salk Institute, ²UC San Diego, ³Wisconsin-Madison

Topic Area: LANGUAGE: Other

Poster D75 Neural changes following short-term visual word recognition training

Sophia van Hees^{1,2}, Penny M Pexman^{1,2}, Sage Brown¹, Andrea B Protzner^{1,2}; ¹University of Calgary, Department of Psychology, ²Hotchkiss

Brain Institute, University of Calgary Topic Area: LANGUAGE: Other

Poster D76 Audiovisual speech intelligibility decays under adverse listening conditions

Jess R. Kerlin¹, Antoine J. Shahin; ¹UC Davis, Center for Mind and Brain Topic Area: LANGUAGE: Other

Poster D77 Double dissociation of structure-function relationships between memory and fluid intelligence using magnetic resonance elastography

Hillary Schwarb¹, Čurtis L. Johnson², Charles H. Hillman³, Arthur F. Kramer³, Neal J. Cohen¹, Aron K. Barbey¹; ¹Beckman Institute, University of Illinois, ²University of Delaware, ³Northeastern University

Topic Area: LONG-TERM MEMORY: Episodic

Poster D78 The neural correlates of successful source encoding and recognition

Louis Renoult¹, Carolin Sievers¹, Matthew Spriggs¹, Andrew P. Bayliss¹; ¹University of East Anglia, UK

Topic Area: LONG-TERM MEMORY: Episodic

Poster D79 Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories

Peter Bayley^{1,2}, Yunzhe Liu³, Wanjun Lin³, Chao Liu³, Yuejia Luo⁴, Jianhui Wu⁵, Shaozheng Qin²; ¹Department of Veterans Affairs, ²Stanford University, ³McGovern institute for Brian Research, Beijing Normal University, ⁴Shenzhen University, ⁵Chinese Academy of Sciences

Topic Area: LONG-TERM MEMORY: Episodic

Poster D80 Investigating semantic and episodic representations for concepts

Wei-Chun Wang¹, Simon W Davis¹, Roberto Cabeza¹; ¹Duke University Topic Area: LONG-TERM MEMORY: Episodic

Poster D81 Modulation of regional activity and inter-regional connectivity during recollection of visual and auditory information

Danielle King¹, Mlchael Rugg¹; ¹University of Texas at Dallas

Topic Area: LONG-TERM MEMORY: Episodic

Poster D82 Multivoxel pattern analysis reveals task-general representation of decision criterion

Benjamin Turner¹, Evan Layher¹, Nicole Marinsek¹, Puneeth Chakravarthula¹, Anjali Dixit¹, Amir Meghdadi¹, Barry Giesbrecht¹, Miguel Eckstein¹, Michael Miller¹; ¹University of California, Santa Barbara

Topic Area: LONG-TERM MEMORY: Episodic

Poster D83 MDMA diminishes the recollection of emotional information.

Manoj Doss¹, Jessica Weafer¹, David Gallo¹, Harriet de Wit¹; ¹University of Chicago

Topic Area: LONG-TERM MEMORY: Episodic

Poster D84 Interactions between parietal and striatal systems contribute to subjective recollection and decision-making

Yana Fandakova¹, Elliott Johnson¹, Simona Ghetti¹; ¹University of California

Topic Area: LONG-TERM MEMORY: Episodic

Poster D85 Effects of Depression in Episodic Memory Updating

Bhaktee Dongaonkar¹, Sumantra Chattarji¹; ¹National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Topic Area: LONG-TERM MEMORY: Episodic

Poster D86 Neurocognitive mechanisms of functional and dysfunctional socio-emotional prospection

Jessica Andrews-Hanna^{1,2}, Emily Lane¹, Lindsay Ives¹, Aylah Sroloff¹, Leonie Koban¹, Michelle Ferris¹, Jessica Green¹, Donna Rose Addis³, Joanna Arch¹; ¹University of Colorado Boulder, ²University of Arizona, ³University of Auckland

Topic Area: LONG-TERM MEMORY: Episodic

Poster D87 Exemplar repetition at encoding alters the specificity of retrieval-related mnemonic information

Erik Wing¹, Wei-Chun Wang¹, Mark Hatcher¹, Roberto Cabeza¹; ¹Duke University

Topic Area: LONG-TERM MEMORY: Episodic

Poster D88 Lateral occipital complex activation associated with response confidence during forced-choice recognition of novel abstract kaleidoscope images

Michael S. Cohen¹, Larry Y. Cheng¹, Ken A. Paller¹, Paul J. Reber¹; ¹Northwestern University

Topic Area: LONG-TERM MEMORY: Episodic

POSTER D89 THETA OSCILLATORY ACTIVITY IN SENSORY CORTEX IS ASSOCIATED WITH REACTIVATION AND ACCURACY AT SUBSEQUENT TEST

John Walker¹, Kathy Low¹, Neal Cohen¹, Gabriele Gratton¹, Monica Fabiani¹; ¹University of Illinois at Urbana-Champaign

Topic Area: LONG-TERM MEMORY: Episodic

Poster D90 How does pre-existing person knowledge affect source memory? Event-Related Potentials dissociate effects of person knowledge and recollection.

Graham MacKenzie¹, Peter J.B. Hancock¹, David I. Donaldson¹; ¹University of Stirling

Topic Area: LONG-TERM MEMORY: Episodic

Poster D91 Mechanisms of targeted memory reactivation during sleep

James Antony¹, Luis Piloto¹, Margaret Wang¹, Ken Norman¹, Ken Paller²;
¹Princeton University, ²Northwestern University

Topic Area: LONG-TERM MEMORY: Episodic

Poster D92 Organization of object representations across different medial temporal lobe structures

Anna Blumenthal¹, Bobby Stojanoski¹, Chris Martin^{1,2}, Rhodri Cusack¹, Stefan Köhler^{1,2,3}; ¹University of Western Ontario, ²University of Toronto, ³Rotman Research Institute

Topic Area: LONG-TERM MEMORY: Other

Poster D93 A novel account of developmental math disability: The procedural deficit hypothesis

Michael Ullman¹, Tanya Evans²; ¹Georgetown University, ²Stanford University

Topic Area: LONG-TERM MEMORY: Skill learning

Poster D94 The role of DLPFC in statistical learning: Evidence from Bilateral Transcranial Magnetic Stimulation

Dezso Nemeth^{1,2}, Geza Ambrus³, Karolina Janacsek^{1,2}, Anna Triborn³, Gyula Kovacs³; ¹Eötvös Loránd University, Budapest, Hungary, ²Hungarian Academy of Sciences, Budapest, Hungary, ³Friedrich Schiller University, Jena, Germany

Topic Area: LONG-TERM MEMORY: Skill learning

Poster D95 Resting state connectivity before and after visuomotor skill learning

Aurélie L Manuel¹, Ādrian G Guggisberg^{1,2}, Francesco Turri², Armin Schnider^{1,2}; ¹Laboratory of Cognitive Neurorehabilitation, University of Geneva and University Hospital of Geneva, Switzerland, ²Division of Neurorehabilitation, University Hospital of Geneva, Switzerland Topic Area: LONG-TERM MEMORY: Skill learning

Poster D96 Post-practice resting-state functional connectivity predicts the benefit of contextual interference on motor learning

Chien-Ho Lin¹, Ho-Ching Yang¹, Barbara Knowlton², Shin-Leh Huang¹, Ming-Chang Chiang¹; ¹National Yang-Ming University, Taiwan, ²UCLA

Topic Area: LONG-TERM MEMORY: Skill learning

Poster D97 Age-related differences in implicit skill consolidation across the human lifespan: Dissociation between general skill and sequence-specific knowledge

Karolina Janacsek^{1,2}, Dora Juhasz³, Dezso Nemeth^{1,2}; ¹Hungarian Academy of Sciences, ²Eotvos Lorand University, ³University of Szeged Topic Area: LONG-TERM MEMORY: Skill learning

Poster D98 Neuroimaging context-dependent perceptual classification

Matthew Crossley¹, Jessica Roeder², Lauren Vucovich², F. Gregory Ashby²; ¹SRI International, ²UC Santa Barbara

Topic Area: LONG-TERM MEMORY: Skill learning

Poster D99 Lateral Occipital and Prefrontal Activation Reflect Distinct Cognitive Mechanisms Involved in Classification of Real-World Stimuli

Kyle Morgan^{1,2}, Dagmar Zeithamova¹; ¹University of Oregon, ²Electrical Geodesics. Inc.

Topic Area: LONG-TERM MEMORY: Skill learning

Poster D100 Investigating Individual Differences in Implicit Sequence Learning

Kelsey R. Thompson¹, Paul J. Reber¹; ¹Northwestern University Topic Area: LONG-TERM MEMORY: Skill learning

Poster D101 Associations between neurochemistry and oscillatory speech coding

Roeland Hancock¹, Srikantan Nagarajan¹, Fumiko Hoeft¹; ¹University of California, San Francisco

Topic Area: PERCEPTION & ACTION: Audition

Poster D102 Categorical perception of Mandarin lexical tone at age 8 can predict children's reading ability at age 10 in Chinese children: a longitudinal auditory ERP investigation.

Han Wu¹, Pengfei Qu², Linjun Zhang³, Hua Shu⁴, Bruce McCandliss⁵, Jingming Liu¹; ¹Tsinghua University, ²Chinese Academy of Governance, ³Beijing Language and Culture University, ⁴Beijing Normal University, ⁵Standford University

Topic Area: PERCEPTION & ACTION: Audition

Poster D103 Effects of a tinnitus percept on tone discrimination learning in Mongolian Gerbils

Achim Schilling¹, Patrick Krauss¹, Konstantin Tziridis¹, Ilona Strohmeyer¹, Holger Schulze¹; ¹University of Erlangen-Nuremberg

Topic Area: PERCEPTION & ACTION: Audition

Poster D104 Altered speech production in response to transient mid-utterance formant perturbation

Inez Raharjo^{1,2}, Hardik Kothare¹, John F. Houde¹, Srikantan S. Nagarajan¹; ¹University of California, San Francisco, ²University of California, Berkeley

Topic Area: PERCEPTION & ACTION: Audition

Poster D105 Brain structural changes in chronic bilateral tinnitus: subtypes and effects of co-morbidity

Bianca Besteher¹, Daniela Ivansic¹, Christian Gaser¹, Igor Nenadic^{1,2}, Orlando Guntinas-Lichius¹, Christian Dobel¹; ¹Jena University Hospital, Jena, Germany, ²Philipps-University Marburg / Marburg University Hospital - UKGM, Marburg, Germany

Topic Area: PERCEPTION & ACTION: Audition

Poster D106 Increased Structural and Functional Connectivity in Jazz Improvising Musicians

Tima Zeng¹, Emily Przysinda¹, Psyche Loui¹; ¹Wesleyan University

Topic Area: PERCEPTION & ACTION: Audition

Poster D107 Structural Brain Differences in Jazz Improvising Musicians

Cameron Arkin¹, Charles Pfeifer¹, Emily Przysinda¹, Psyche Loui¹;
¹Department of Psychology and Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, USA

Topic Area: PERCEPTION & ACTION: Audition

Poster D108 Post-Stimulus Target Detection Modulation as Evidence for the Oscillatory Entrainment Model

Moran Aharoni¹, Matthias M. Müller¹, Erich Schröger¹; ¹Leipzig University, Germany

Topic Area: PERCEPTION & ACTION: Audition

Poster D109 Improving visuo-spatial abilities in blind youngsters using programmable tactile displays

Fabrizio Leo¹, Carla Tinti², Silvia Chiesa², Roberta Cavaglià², Susanna Schmidt², Luca Brayda¹; ¹Istituto Italiano di Tecnologia, ²Università di Torino

Topic Area: PERCEPTION & ACTION: Other

Poster D110 A tool to cooperate: dissociating peri- and interpersonal space

Ivan Patané^{1,2,3}, Alessandro Farnè^{2,3,4}, Frassinetti Francesca^{1,5}; ¹Department of Psychology, University of Bologna, Bologna, Italy, ²ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France, ³UCBL, Lyon I University, Lyon, France, ⁴Hospices Civiles de Lyon, Neuro-immersion & Mouvement and Handicap, Lyon, France, ⁵Fondazione Salvatore Maugeri, Clinica del Lavoro e della Riabilitazione, IRCCS – Istituto Scientifico di Castel Goffredo. Mantua, Italy

Topic Area: PERCEPTION & ACTION: Other

Poster D111 Strategic adaptation to non-reward prediction error qualities and contextual volatility in fMRI

Daniel S. Kluger^{1,2}, Ricarda I. Schubotz^{1,2,3}; ¹University of Muenster, Germany, ²Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany, ³University Hospital Cologne, Germany

Topic Area: PERCEPTION & ACTION: Other

Poster D112 Central olfactory mechanisms underlying sleepdependent changes in food processing

Surabhi Bhutani¹, Jay A Gottfried¹, Thorsten Kahnt¹; ¹Northwestern University Feinberg School of Medicine

Topic Area: PERCEPTION & ACTION: Other

Poster D113 Use of Temporal Information in 6-Month-Old Infants' Expectations.

Kyle Comishen¹, Scott A. Adler¹; ¹York University Topic Area: PERCEPTION & ACTION: Other

Poster D114 External Control of the Stream of Consciousness: An EEG Study

Wei Dou¹, Sabrina Bhangal¹, Hyein Cho², Allison K. Allen³, Zaviera Reyes¹,

Ezequiel Morsella^{1,4}, Mark W. Geisler¹; ¹Department of Psychology, San Francisco State University, ²Department of Psychology, The Graduate Center, The City University of New York, ³Department of Psychology, University of California, Santa Cruz, ⁴Department of Neurology, University of California, San Francisco

Topic Area: PERCEPTION & ACTION: Other

Poster D115 Mapping the acoustical and categorical features of sounds in the occipital cortex of blind and sighted people

Stefania Mattioni^{1,2}, Rezk Mohamed², Karen Cuculiza¹, Ceren Battal¹, Roberto Bottini¹, Markus Van Ackeren¹, Nick Oosterhof¹, Olivier Collignon^{1,2}; ¹University of Trento, Italy, ²Université catholique de Louvain, Louvain-la-Neuve, Belgium

Topic Area: PERCEPTION & ACTION: Other

Poster D116 The search for the putative number form area: A meta-analysis

Darren J. Yeo¹.², Eric D. Wilkey¹, Gavin R. Price¹; ¹Peabody College, Vanderbilt University, USA, ²Nanyang Technological University, Singapore Topic Area: PERCEPTION & ACTION: Vision

Poster D117 Visual-Field Specific Category Learning

Luke Rosedahl¹, Miguel Eckstein¹, Greg Ashby¹; ¹University of California Santa Barbara

Topic Area: PERCEPTION & ACTION: Vision

Poster D118 Reward Associations Modify Neural Representations: An Event-related Potentials Study

Huan Wang^{1,2}, Killian Kleffner¹, Patrick Carolan¹, Mario Liotti¹; ¹Simon Fraser University, ²UC Davis

Topic Area: PERCEPTION & ACTION: Vision

Poster D119 Cortical and subcortical contributions to passive perception of visuospatial changes

Maximilian Hauser^{1,2}, Stefanie Heba³, Tobias Schmidt-Wilcke³, Martin Tegenthoff³, Christian Bellebaum⁴, Denise Manahan-Vaughan^{1,2}; ¹Ruhr-University Bochum, Bochum, Germany, ²International Graduate School of Neuroscience, Bochum, Germany, ³University Hospital Bergmannsheil, Bochum, Germany, ⁴Heinrich Heine University, Düsseldorf, Germany Topic Area: PERCEPTION & ACTION: Vision

Poster D120 Electrophysiological Evidence for Temporally Distinct Effects of Encoding, Maintenance, and Perceptual Fidelity in Object-Substitution Masking

Christine Salahub¹, Stephen Emrich¹; ¹Brock University Topic Area: PERCEPTION & ACTION: Vision

Poster D121 Lower visual field advantage as a default setting for processing facial and non-facial stimuli : evidence from a combined EEG and Eye-tracking study.

Sandra Guerreiro Jacinto^{1,2}, Édwige Taniga¹, Anthony Hosein¹, Boutheina Jemel^{1,2}; ¹Hôpital Rivière des Prairies, ²Université de Montréal Topic Area: PERCEPTION & ACTION: Vision

Poster D122 Threat adaptation in human visual cortex: neuronal orientation tuning in a two-phase conditioning paradigm

L. Forest Gruss¹, Nathan M. Petro¹, Andreas Keil¹; ¹University of Florida Topic Area: PERCEPTION & ACTION: Vision

Poster D123 Temporal evolution of visual representation: From physical to perceived numerosity

Michele Fornaciai¹, Joonkoo Park¹, ¹University of Massachusetts Amherst Topic Area: PERCEPTION & ACTION: Vision

Poster D124 Exploring network connectivity during visual aesthetic experiences

Ilkay Isik¹, Edward A. Vessel¹; ¹Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany

Topic Area: PERCEPTION & ACTION: Vision

Poster D125 The ventral and dorsal visual pathways exchange information during configural face processing.

Valentinos Zachariou¹, Nicole Mlynaryk¹, Christine Gou¹, Leslie Ungerleider¹; ¹Laboratory of brain and cognition, NIMH, NIH

Topic Area: PERCEPTION & ACTION: Vision

Poster D126 An integrated view of visual lateralization: Correlations and modulating factors

Sanne Brederoo¹, Mark R. Nieuwenstein¹, Frans W. Cornelissen¹, Monicque M. Lorist¹; ¹University of Groningen

Topic Area: PERCEPTION & ACTION: Vision

Poster D127 The role of the structural connectome in literacy and numeracy development in children

Joe Bathelt¹, Susan Gathercole¹, Sally Butterfield¹, Duncan Astle¹; ¹MRC Cognition & Brain Sciences Unit

Topic Area: THINKING: Development & aging

Poster D128 Skill-related structural brain changes over the first years of math acquisition.

Janosch Linkersdörfer^{1,2,3}, Fumiko Hoeft^{3,4}, Sven Lindberg^{2,5}, Marcus Hasselhorn^{1,2,6}, Christian J. Fiebach^{2,6}, Jan Lonnemann^{1,2}; ¹German Institute for International Educational Research, Frankfurt am Main, Germany, ²Center for Research on Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany, ³University of California, San Francisco, USA, ⁴Haskins Laboratories, Yale University, ⁵Paderborn University, Paderborn, Germany, ⁶Goethe-University Frankfurt am Main, Germany

Topic Area: THINKING: Development & aging

Poster D129 Relationships between ANS, intelligence and young children's ability to solve non-symbolic division problems

Nayun Kwon¹, So-Yeon Kim¹; ¹Department of Psychology, Duksung Women's University

Topic Area: THINKING: Development & aging

Poster D130 The Relationship of Intraoperative EEG Measures with Pre & Postoperative Cognitive Function

Jacob E. Gardner¹, Charlie M. Giattino¹, Kenneth C. Roberts¹, Faris M. Sbahi¹, Miles Berger¹, Marty G. Woldorff¹; ¹Duke University

Topic Area: THINKING: Development & aging

Poster D131 Assessing hierarchical self-similarity processing with univariate and multivariate analysis approaches

Florian Ph.S Fischmeister^{1,2}, Georg Langs³, Mauricio Martins^{4,5,6}, W. Tecumseh Fitch⁴, Roland Beisteiner²; ¹High Field Magnetic Resonance Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria, ²Department of Neurology, Medical University of Vienna, Vienna, Austria, ³Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, ⁴Department of Cognitive Biology, University of Vienna, Vienna, Austria, ⁵Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany, ⁶Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Topic Area: THINKING: Other

Poster D132 Understanding the Unique NeuroCognitive Architectures of Individuals: A Resting State Functional Connectivity Analysis (rsFC) of the Multiple intelligences

Branton Shearer¹; ¹MI Research and Consulting

Topic Area: THINKING: Other

Poster D133 Diurnal Rhythms in Freedom of Thought: An Experience Sampling Study

Caitlin Mills¹, Dylan Stan¹, Quentin Raffaelli¹, Kalina Christoff¹; ¹University of British Columbia

Topic Area: THINKING: Other

Poster D134 The Brain on Tylenol: Acetaminophen Amplifies Disengagement from External Stimuli During Internally Directed Thought

Sumeet Mutti¹, Daniel Randles², Diana Pricop¹, Julia W. Y. Kam³, Steven J. Heine¹, Todd C. Handy¹; ¹University of British Columbia, ²University of Toronto, ³UC Berkeley

Topic Area: THINKING: Other

Poster D135 Individual differences in grey matter structure predict frequency of certain types of stimulus-independent thoughts

Sneha Sheth¹, Kieran Fox¹, Michael Jarrett¹, Manesh Girn¹, Mara Puertolas Lopez², Matthew dixon¹, Alexander Rauscher¹, Kalina Christoff¹; ¹University of British Columbia, ²National Institute on Deafness and Other Communication Disorders

Topic Area: THINKING: Other

Poster D136 Sleep On It – The Impact of Problem Reactivation during Sleep on Problem Solving

Kristin Grunewald¹, Samuel Osburn¹, Katherine George¹, Ken Paller¹, Mark Beeman¹; ¹Northwestern University

Topic Area: THINKING: Problem solving

Poster D137 Electrocorticography reveals the neural mechanisms of the arithmetic problem-size effect

Pedro Pinheiro-Chagas¹, Amy L. Daitch², Josef Parvizi², Stanislas Dehaene¹; ¹Collège de France, Paris, ²Stanford University

Topic Area: THINKING: Problem solving

Poster D138 Selective Attention to Global Stimuli Induces Analytic Problem Solving

Tiffani Ng¹, Mark Beeman¹; ¹Northwestern University

Topic Area: THINKING: Problem solving

Poster D139 Creative Cognition under Performance Pressure: Investigating How Anxiety Affects Attentional Styles and Creativity

Kyle Nolla¹, Mark Beeman¹; ¹Northwestern University

Topic Area: THINKING: Problem solving

Poster Session E

Poster E1 Polarity-dependent effects of biparietal tDCS on the interplay between top-down and bottom-up processes in visual attention

Magdalena Chechlacz^{1,2}, Dario Cazzoli³, Joy J Geng⁴, Peter C Hansen²; ¹University of Oxford, ²University of Birmingham, ³University of Bern, ⁴UC Davis

Topic Area: ATTENTION: Spatial

Poster E2 Alpha oscillations during exogenous and endogenous attention in touch

Alexander Jones¹, Bettina Forster²; ¹Middlesex University London, ²City University London

Topic Area: ATTENTION: Spatial

Poster E3 Cerebellar contributions to reflexive and voluntary covert visual attention

Christopher Striemer^{1,2}, Brandon Craig¹, Britt Anderson³, James Danckert³;
¹MacEwan University, Edmonton, Alberta, Canada, ²University of Alberta, Edmonton, Alberta, Canada, ³University of Waterloo, Waterloo, Ontario, Canada

Topic Area: ATTENTION: Spatial

Poster E4 Males and Females use different spatial strategies when navigating a novel tabletop navigation task

Mashal Fida¹, Erin L. Zelinski², Sean G. Lacoursiere¹, Robert J. Sutherland¹;
¹Canadian Centre of Behavioural Neuroscience, University of Lethbridge,
²Cumming School of Medicine, University of Calgary

Topic Area: ATTENTION: Spatial

Poster E5 Neural Activation Patterns of Binge Drinking Young-Adults When Performing a Mental Rotation Task: A Functional Magnetic Resonance Imaging (fMRI) Study

Karl Kashfi¹, Peter Syapin¹, Michael O'Boyle^{1,2}; ¹Texas Tech University Health Sciences Center, ²Texas Tech University

Topic Area: ATTENTION: Spatial

Poster E6 Cortical Expression of the Magnitude of Inhibition of Return

Grace Whitaker¹, Ellen Poliakoff¹, Joanna Neill¹, Wael El-Deredy¹; ¹The University of Manchester

Topic Area: ATTENTION: Spatial

Poster E7 Involuntary Mental Rotation and Visuospatial Imagery from External Control: Implications for Frontal Control Mechanisms

Donish Cushing¹, Ezequiel Morsella^{1,2}; ¹Department of Psychology, San Francisco State University, ²Department of Neurology, University of California. San Francisco

Topic Area: ATTENTION: Spatial

Poster E8 Distractor suppression varies with expectation

MaryAnn Noonan¹, Yannik Bauer², Alex Von Lautz³, Christopher Summerfield¹, Mark Stokes¹; ¹Department of Experimental Psychology, University of Oxford, Oxford, UK, ²International Max Planck Research School, University of Tübingen, Germany, ³Bernstein Center for Computational Neuroscience, Berlin, Germany.

Topic Area: ATTENTION: Spatial

Poster E9 Spatial selectivity and attentional modulation reflect coordinated processing of high frequency broadband and alpha signals in the human visual system

Anne Martin¹, Liang Wang^{1,2}, Yuri B. Saalmann^{1,3}, Avgusta Shestyuk⁴, Nathan E. Crone⁵, Josef Parvizi⁶, Robert T. Knight⁴, Sabine Kastner¹;

¹Princeton University,

²Chinese Academy of Sciences,

³University of Wisconsin – Madison,

⁴University of California Berkeley,

⁵The Johns Hopkins Hospital,

⁶Stanford University School of Medicine

Topic Area: ATTENTION: Spatial

Poster E10 Internal consistency of spatial information in a cognitive map

Yuri Dabaghian¹; ¹Baylor College of Medicine, Houston, TX 77019 USA Topic Area: ATTENTION: Spatial

Poster E11 Aberrant expression of proteins with possible role in cognitive impairment in SCA12 patients

Rajeswari Moganty¹; ¹All India Institute of Medical Sciences, New Delhi INDIA

Topic Area: EMOTION & SOCIAL: Emotion-cognition interactions

Poster E12 Emotional mimicry beyond the face: Rapid face and body responses to facial expressions

Catherine Reed¹, Eric Moody², Tara Van Bommel³, Betsy App³, Daniel McIntosh³; ¹Claremont McKenna College, ²University of Colorado Anschutz Medical Campus, ³University of Denver

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E13 ERPs to the Military Affective Picture Set (MAPS)

Marianna Eddy^{1,2}, Mary Boomhower¹, Breanne Hawes¹, Jennifer Rourke¹, Caroline Mahoney^{1,2}; ¹U.S. Army Natick Soldier Research, Development, and Engineering Center, ²Center for Applied Brain and Cognitive Sciences Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E14 Context-dependent neural responses in insula and amygdala when viewing affective animal videos

Christine A. Godwin¹, Sunya A. Fareed¹, J.C. Mizelle², Eric H. Schumacher¹; ¹Georgia Institute of Technology, ²East Carolina University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E15 The late positive potential (LPP) as a novel method for assessing fear conditioning in humans

Felix Bacigalupo¹, Steven J. Luck¹; ¹Center for Mind and Brain, University of California - Davis

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E16 Transient versus sustained neural responses to pleasurable aesthetic experiences

Amy Belfi¹, Edward A. Vessel², Denis G. Pelli¹, Anjan Chatterjee³, Helmut Leder⁴, G. Gabrielle Starr¹; ¹New York University, ²Max Planck Institute for Empirical Aesthetics, ³University of Pennsylvania, ⁴University of Vienna Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E17 Taking hyperscanning out of the lab: Evidence from EEG recordings on 1400 dyads during face-to-face interaction

Suzanne Dikker^{1,2}, Georgios Michalareas³, Matthias Oostrik, Hasibe Melda Kahraman^{4,2}, Imke Kruitwagen¹, Shaista Dhanesar⁵, Marijn Struiksma¹, David Poeppel^{2,3}; ¹Utrecht University, ²New York University, ³Max Planck Institute for Empirical Aesthetics, ⁴Hunter College, ⁵Washington University in St. Louis

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E18 EEG frontal alpha power asymmetry can evaluate temporal dynamics of our emotion

Motoyuki Sanada¹, Kohei Fuseda¹, Jun'ichi Katayama^{1,2}; ¹Department of Integrated Psychological Sciences, Kwansei Gakuin University, ²Center for Applied Psychological Science (CAPS)

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E19 The effect of narrative context on persuasive message processing

Matthew Bezdek¹, Richard Gerrig², Tiffany Nguyen¹, William Wenzel², Eric Schumacher¹; ¹Georgia Institute of Technology, ²Stony Brook University Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E20 The association between residual cannabis use and the P300 event related potential on emotion processing in subclinical depression

Robert Torrence¹, Joseph Davis¹, Lucy Troup¹; ¹Colorado State University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E21 Individual differences in reactivity to reward partly account for variability in resilience to stress

Polina Zozulinsky¹, Roee Admon¹, Tomer Shechner¹, Rachel Tomer¹; ¹University of Haifa, Israel

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster E22 The brain network for emotional body language reading: Combined structural and effective connectivity

Arseny SOKOLOV¹.², Peter ZEIDMAN², Michael ERB³, Frank POLLICK⁴, Wolfgang GRODD⁵, Richard FRACKOWIAK¹.⁶, Karl FRISTON², Marina PAVLOVA³; ¹Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland, ²University College London (UCL), UK, ³University of Tübingen Medical School, Germany, ⁴University of Glasgow, UK, ⁵Max Planck Institute for Biological Cybernetics, Tübingen, Germany, ⁶Ecole Normale Supérieure DEC, Paris, France

Topic Area: EMOTION & SOCIAL: Person perception

Poster E23 Reconsidering the face inversion effect: A statestrength approach

Robin I. Goodrich¹, Andrew P. Yonelinas¹; ¹University of California, Davis Topic Area: EMOTION & SOCIAL: Person perception

Poster E24 Preconscious and conscious stages of stimulus processing depend on whom we are with.

J. Bruno Debruille^{1,2}, Shahin Tavakol^{1,2}, Maud Haffar^{1,2}, Sheila Bouten¹, Hugo Pantecouteau³; ¹Douglas Institute Research Center, Montreal, Canada, ²McGIII University' Montreal, Canada, ³École Normale Supérieure de Lyon, France

Topic Area: EMOTION & SOCIAL: Person perception

Poster E25 Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

Richard Ramsey¹, Emily Butler¹, Chris Saville¹, Rob Ward¹; ¹Bangor University, UK

Topic Area: EMOTION & SOCIAL: Person perception

Poster E26 Investigating the Familiar Face Processing Network with Multivoxel Pattern Analysis

Matteo Visconti di Oleggio Castello¹, Yaroslav O. Halchenko¹, J. Swaroop Guntupalli¹, Jason D. Gors¹, M. Ida Gobbini^{1,2}; ¹Dartmouth College, ²University of Bologna, Italy

Topic Area: EMOTION & SOCIAL: Person perception

Poster E27 Semantic and episodic memory impairments for faces in frontotemporal dementia and Alzheimer's disease

Jessica A. Collins^{1,2}, Bradford C. Dickerson^{1,2}; ¹Massachusetts General Hospital. ²Harvard Medical School

Topic Area: EMOTION & SOCIAL: Person perception

Poster E28 Activation of left temporoparietal junction during mentalizing is directly related to performance in social interactions

Abdulaziz Abubshait¹, George A. Buzzell^{1,2}, Paul J. Beatty¹, Eva Wiese^{1,2}; ¹George Mason University, ²Center of Excellence in Neuroergonomics, Technology, and Cognition (CENTEC)

Topic Area: EMOTION & SOCIAL: Person perception

Poster E29 Bilingualism interacts with cognitive control to predict parietal grey matter volume

Kelly A. Vaughn¹, Pilar Archila-Suerte¹, Arturo E. Hernandez¹; ¹University of Houston

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E30 Impact of dopamine depletion on N-40, a marker of the electrophysiological response selection

celine ramdani¹, franck vidal², thierry hasbroucq²; ¹french army biomedical research institute, ²Aix-Marseille Université and CNRS

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E31 Dissociable late and early error monitoring processes: Error positivity in the absence of an error-related negativity.

Martin E. Maier¹, Francesco Di Gregorio^{1,2}, Marco Steinhauser¹; ¹University of Eichstätt-Ingolstadt, ²Ospedale Maggiore Carlo Alberto Pizzardi di Bologna

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E32 Error-Induced Blindness: Error Detection Leads to Impaired Sensory Processing and Lower Accuracy at Short Response-Stimulus Intervals

Paul Beatty¹, George Buzzell², Natalie Paquette¹, Daniel Roberts¹, Craig McDonald¹; ¹George Mason University, ²University of Maryland Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E33 Behavioral and Electrophysiological Measures of Conflict Monitoring

Peter Egeto¹, Tisha J Omstein¹, Eleenor H Abraham¹; ¹Ryerson University Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E34 Effect of language proficiency and age of acquisition on executive function in bilinguals

Vickie Yu¹, Emma Aleksanyan¹, Kathryn Balina¹, Bernice Briones¹, Katya Gomez¹; ¹Department of Communication Disorders and Sciences, California State University, Northridge

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E35 Monitoring In Second Language Reading: Evidence From ERPs

Marieke Engbrenghof^{1,2}, Nan van de Meerendonk³, Megan Zirnstein⁴, Judith F. Kroll^{4,5}, Dorothee J. Chwilla¹; ¹Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands, ²University of Groningen, Groningen, The Netherlands, ³Thebe, The Netherlands, ⁴University of California, Riverside, ⁵Pennsylvania State University Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E36 Adolescents and Young Adults with Autism Spectrum Disorder Show Differences in Dynamics and Recruitment of Cognitive Control Networks

Matthew V. Elliott¹, Marie K. Krug¹, Cory C. Coleman¹, Jennifer E. Farren¹, Andria J. Farrens¹, J. Daniel Ragland¹, Tara A. Niendam¹, Cameron S. Carter¹, Marjorie Solomon¹; ¹University of California at Davis

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E37 Neurophysiological differences in deliberate and spontaneous mind-wandering

Adrien Martel¹, Mahnaz Arvaneh², Paul Dockree¹, Ian Robertson¹; ¹Trinity Institute of Neuroscience, ²The University of Sheffield

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E38 Interactions between oscillatory dynamics support adjustment of stimulus representations during reinforcement learning

Irene van de Vijver^{1,2}, Joram van Driel^{2,3}, Arjan Hillebrand⁴, K Richard Ridderinkhof²; ¹Radboud University, ²University of Amsterdam, ³VU University, ⁴VU University Medical Center

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E39 Markers of Early Adversity Associated with Reduced Error-Related Negativity in Early Childhood

Oliver Medak¹, Ryan J. Giuliano¹, Leslie E. Roos¹, Kathryn G. Beauchamp¹, Elliot T. Berkman¹, Philip A. Fisher¹; ¹University of Oregon Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E40 The feedback-related negativity indicates different use of feedback in two spontaneous strategies for handling changing values

Sucheta Chakravarty¹, Isha Ober¹, Christopher R. Madan¹,², Yvonne Y. Chen¹, Esther Fujiwara¹, Jeremy B. Caplan¹; ¹University of Alberta, ²Boston College

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E41 Electrophysiological Correlates of Reward Processing, Error Monitoring and Preferences

James Germi¹, Bradley Lega¹; ¹UT Southwestern Medical Center Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E42 Clinical perfectionism and associated traits: implications for error processing

Sarah T Loew¹, Ronnie J Lockington¹, Kelsey A Rolefson¹, Samuel J Becker¹, A'Lea M Yonker¹, Simon M Moe¹, David S Leland¹; ¹University of Wisconsin - Eau Claire

Topic Area: EXECUTIVE PROCESSES: Monitoring & inhibitory control

Poster E43 The role of the frontoparietal cortex in attentional guidance by working memory: a TMS study

min wang^{1,2,3,4}, Ling Li^{1,2,3,4}; 'Key Laboratory for NeuroInformation of Ministry of Education, ²High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, ³Center for Information in Medicine, ⁴University of Electronic Science and Technology of China

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E44 Examining the Functional Network Structure of the Frontal Lobes Across Domains of Cognition

Jordan Garrett¹, Robert Blumenfeld¹; ¹California State Polytechnic University, Pomona

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E45 The Causal Role of Prefrontal Cortex and Somatosensory Cortex in Tactile Working Memory

Di Zhao¹, Yixuan Ku^{1,2}; ¹The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, ²NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E46 Dissociable neural and behavioral patterns of proactive interference for Emotion and Neutral Information in Working Memory

Eda Mizrak¹.², Henrik Singmann³, Ilke Oztekin¹; ¹Koc University, ²UC Davis, ³University of Zurich

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E47 Delayed enhancement in rule-based category learning following acute psychosocial stress

David B. Smith¹, Steve Hutchinson¹, Shannon K. McCoy¹, Shawn W. Ell^{1,2}; ¹University of Maine, ²Maine Graduate School of Biomedical Sciences & Engineering

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E48 Encoding induced alpha EEG activity tracks changes in working memory manipulations

Joel Robitaille¹, Stephen M. Emrich¹; ¹Brock University Topic Area: EXECUTIVE PROCESSES: Working memory

POSTER E49 ALPHA AND THETA BANDS RESTING EEG PREDICT DIFFERENT LEARNING PATTERNS IN VISUAL WORKING MEMORY

Mara Golemme¹, Elisa Tatti^{1,2}, Giulia Grande¹, Caroline Di Bernardi Luft³, Joydeep Bhattacharya¹, Marinella Cappelletti¹; ¹Department of Psychology. Goldsmiths, University of London, United Kingdom., ²Brain Investigation and Neuromodulation laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy., ³School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E50 Reducing Available Working Memory Capacity Affects DRM False Memory

Lilian Cabrera¹, Jianjian Qin²; ¹University of Michigan, Ann Arbor, ²California State University, Sacramento

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster E51 Single-word ERPs reveal age-related changes in incremental context processing

Brennan Payne¹, Kara Federmeier¹; ¹University of Illinois Topic Area: LANGUAGE: Development & aging

Poster E52 Better maternal reading fluency is related to stronger functional connectivity in future reading networks in preschool children

Tzipi Horowitz-Kraus¹, John Hutton², K. J Philean², Scott Holland²; ¹Technion, ²Cincinnati Childre's Hospital Medical Center

Topic Area: LANGUAGE: Development & aging

Poster E53 Functional deficit of EEG brain network in adult who stutter

Amir Hossein Ghaderi¹, Bahar Barani², Soroush Haghparasti³, Hossein Shiravi⁴, Fatemeh Akrami⁵; ¹Cognitive Neuroscience Lab., Department of psychology, University of Tabriz, Tabriz, Iran, ²MD. Student at University of Kansas Medical Center, Kansas city, USA, ³Department of engineering, University of Kashan, Kashan, Iran, ⁴Department of engineering, University of Shahid Beheshti, Tehran, Iran, ⁵School of Health Management and Information Sciences ³ Iran University of Medical Sciences, Tehran, Iran

Topic Area: LANGUAGE: Development & aging

Poster E54 Speech encoding in quiet and background noise in 2 year olds

Sree Rajendran¹, Cynthia Roesler¹, Julie Morgan-Byrne¹, Silvia Ortiz-Mantilla¹, Gabriella Musacchia^{2,3}, April Benasich¹; ¹Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, NJ, ²Department of Speech-Language Pathology and Audiology, University of the Pacific, ³Department of Otolaryngology Head and Neck Surgery, Stanford University Medical School

Topic Area: LANGUAGE: Development & aging

Poster E55 A comprehensive examination of language in Parkinson's disease: Evidence from syntax, morphology, and lexical processing

Jana Reifegerste¹, Karim Johari², Matthew Walenski³, Farzad Ashrafi⁴, Roozbeh Behroozmand², Michael Ullman⁵; ¹University of Potsdam, Germany, ²University of South Carolina, ³Northwestern University, ⁴Shahid Beheshti University of Medical Sciences, Iran, ⁵Georgetown University

Topic Area: LANGUAGE: Development & aging

Poster E56 Left Anterior-Posterior Aging effect for lexical production. Functional MRI assessment.

Elena Hoyau^{1,2}, Emilie Cousin^{1,2,3}, Cédric Pichat^{1,2}, Assia Jaillard³, Monica Baciu^{1,2}; ¹Univ. Grenoble Alpes, LPNC, F-38040 Grenoble, France, ²CNRS, LPNC UMR 5105, F-38040 Grenoble, France, ³UMS IRMaGe, IRM 3T, CHU Grenoble, Univ. Grenoble Alpes, F-38043 Grenoble, France

Topic Area: LANGUAGE: Development & aging

Poster E57 Tones as predictors of suffixes in L2 processing

Anna Hed¹, Andrea Schremm¹, Merle Horne¹, Mikael Roll¹; ¹Lund University Topic Area: LANGUAGE: Development & aging

Poster E58 Brain mechanisms underlying visuo-orthographic deficits in children with developmental dyslexia

Gregory Spray¹, Xin Yan¹, Yanni Liu², Fan Čao¹; ¹Michigan State University, ²University of Michigan

Topic Area: LANGUAGE: Development & aging

Poster E59 Language-modulated perceptual compensation: Functional connectivity analysis of L1 and L2 reading impairments in Chinese-English bilingual children

Manli Zhang¹, Xiaoxia Feng², Yue Gao², Xiujie Yang¹, Weiyi Xie¹, Feng Ai¹, Hehui Li², Xingnan Zhao¹, Chi Zhang¹, Li Liu², Guosheng Ding², Xiangzhi Meng¹; ¹Peking University, China, ²Beijing Normal University, China

Topic Area: LANGUAGE: Development & aging

Poster E60 Neural mechanisms of speech versus non-speech detection in children with autism spectrum disorders

Alena Galilee¹, Chrysi Stefanidou², Joseph P. McCleery³; ¹Dalhousie University, Nova Scotia, B3H 4R2, Canada, ²University of Birmingham, Birmingham, West Midlands, B15 2TT, United Kingdom, ³Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA

Topic Area: LANGUAGE: Development & aging

Poster E61 Phonics Instruction Mediates the Relationship between Brain Structural Development and Reading Performances

Tin Nguyen¹, Stephanie Del Tufo¹, Laurie Cutting¹; ¹Vanderbilt University Topic Area: LANGUAGE: Development & aging

Poster E62 EEG Evidence for Differences in Audiovisual Speech Processing in Apraxia of Speech

Melissa Randazzo¹, Karen Froud²; ¹Adelphi University, ²Teachers College, Columbia University

Topic Area: LANGUAGE: Development & aging

Poster E63 Phonetic representations in young children with dyslexia

Maaike Vandermosten^{1,2,3}, Joao Correia², Jolijn Vanderauwera¹, Jan Wouters¹, Pol Ghesquiere¹, Milene Bonte²; ¹KU Leuven, ²Maastricht University, ³Uuniversity of California San Francisco (UCSF)

Topic Area: LANGUAGE: Development & aging

Poster E64 The Effect of Instruction on People's Ability to Learn Simultaneous Statistical Inputs

Tess Allegra Forest¹, Taraz Lee², Ashkan Kiyomarsi¹, Amy Finn¹; ¹The University of Toronto, ²The University of Michigan

Topic Area: LANGUAGE: Other

Poster E65 Differences in Foreign Vocabulary Learning Outcomes Between Virtual Environment Immersion-based, Text-based, and Picture-based Learning

Brandin Munson¹, Arturo Hernandez; ¹University of Houston

Topic Area: LANGUAGE: Other

Poster E66 A sensorimotor network for voluntary oculomotor function in skilled reading: From cortex to brainstem

Benjamin Schloss¹, Chun-Ting Hsu¹, Ping Li¹; ¹Pennsylvania State University Topic Area: LANGUAGE: Other

Poster E67 A cross-sectional and longitudinal study of white matter pathways affected by literacy training

Alastair Smith¹, Mark Bastin², Uttam Kumar³, Ramesh K. Mishra⁴, Viveka N. Tripathi⁵, Anupam Guleria³, Jay P. Singh⁵, Falk Huettig¹; ¹Max Planck Institute for Psycholinguistics, ²University of Edinburgh, ³Centre of Biomedical Research (CBMR), Lucknow, ⁴University of Hyderabad, ⁵University of Allahabad

Topic Area: LANGUAGE: Other

Poster E68 Electrophysiological Language Processing Signals Over Time: A Study of the Retest Reliability of the N400 and P600 Event-Related Potential Components

Erin Kohnke¹, Mandy Faretta-Stutenberg², Darren Tanner³, Kara Morgan-Short¹; ¹University of Illinois at Chicago, ²Northern Illinois University, ³University of Illinois at Urbana-Champaign

Topic Area: LANGUAGE: Other

Poster E69 Orthographic codes in the ventral visual system and the reading network revealed by complex grapheme manipulation

Florence Bouhali^{1,2}, Zoé Bézagu¹, Stanislas Dehaene^{3,4}, Laurent Cohen^{1,5};
¹Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM,
²Université Paris Descartes, ³Collège de France, ⁴INSERM, CEA, NeuroSpin, U992, Gif-sur-Yvette, France, ⁵AP-HP Hôpital de la Pitié Salnâtrière

Topic Area: LANGUAGE: Other

Poster E70 Classification of neural responses to contextually constrained sentence endings using single trial EEG data

James J. S. Norton¹, Ryan J. Hubbard¹, Cybelle Smith¹, Timothy Bretl¹; ¹University of Illinois

Topic Area: LANGUAGE: Other

Poster E71 Electrocorticographic changes at different cortical regions in sentence production

Johnathan Wu^{1,2}, Toshimune Kambara^{1,3}, Yasuo Nakai¹, Eishi Asano¹;
¹Children's Hospital of Michigan, ²Wayne State University School of Medicine, ³Postdoctoral Fellowship for Research Abroad, Japan Society for the Promotion of Science

Topic Area: LANGUAGE: Syntax

Poster E72 Compounds emerge from the merge operation in human language syntax

Tomomi Hida¹, Hiroaki Mizuhara¹; ¹Kyoto University

Topic Area: LANGUAGE: Syntax

Poster E73 Anticipating morphological and syntactic structures – investigating the pre-activation negativity

Pelle Söderström¹, Merle Horne¹, Mikael Roll¹; ¹Lund University

Topic Area: LANGUAGE: Syntax

Poster E74 Native language proficiency modulates spatial characteristics and magnitude of neural responses to phrase-structure violations: An MEG study

Lyam Bailey¹, Lisa J. Beck¹, Morgan Johnson¹, Tim Bardouille¹, Aaron J. Newman¹; ¹Dalhousie University

Topic Area: LANGUAGE: Syntax

Poster E75 A cognitive impairment for sentence planning after focal damage to the Frontal Aslant Tract

Benjamin Chernoff¹, Alex Teghipco¹, Frank Garcea^{1,2}, Susan Smith³, Webster Pilcher³, Bradford Mahon^{1,2,3}; ¹University of Rochester, ²Center For Visual Science, ³University of Rochester Medical Center

Topic Area: LANGUAGE: Syntax

Investigating with Finger Tracking the Acquisition of Semantic and Syntactic Symbols in an Artificial Mini-language

Fosca Al Roumi¹, Dror Dotan^{1,2}, Stanislas Dehaene^{1,3}; ¹Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France, ²Language and Brain Lab, School of Education and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, ³College de France, 11 Place Marcelin Berthelot, 75005 Paris, France

Topic Area: LANGUAGE: Syntax

Poster E77 The Effect of the Clause Boundary on Sentence **Processing Costs**

Ryan Rhodes¹; ¹University of Delaware Topic Area: LANGUAGE: Syntax

The effects of L1 morphology on subject-verb Poster E78 agreement processing in English

Andrew Armstrong¹, Nyssa Bulkes¹, Darren Tanner¹; ¹University of Illinois at Urbana-Champaign

Topic Area: LANGUAGE: Syntax

Poster E79 Event-related potentials at study and test explain individual memory-performance differences in associative recognition

Yvonne Y Chen¹, Jeremy B Caplan¹; ¹University of Alberta, Edmonton, Alberta, Canada

Topic Area: LONG-TERM MEMORY: Episodic

Hippocampal theta oscillations differentiate Poster E80 recognition with and without correct source retrieval.

Kamin Kim¹, Arne Ekstrom², Nitin Tandon¹; ¹Department of Neurosurgery, University of Texas Medical School at Houston, ²Center for Neuroscience and Department of Psychology, University of California Davis

Topic Area: LONG-TERM MEMORY: Episodic

To The Neural Mechanism Supporting Episodic Retrieval is Sensitive to the Quality of Information in both Younger and Older Adults.

Jamie Murray¹, David Donaldson¹; ¹University of Stirling Topic Area: LONG-TERM MEMORY: Episodic

Poster E82 Implicit memory for content and speaker of messages heard during slow-wave sleep

Simon Ruch^{1,2}, Romi Zäske^{3,4}, Marc Alain Züst^{1,2}, Stefan R. Schweinberger³, Katharina Henke^{1,2}; ¹Department of Psychology, University of Bern, Bern, Switzerland, ²Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland, ³Department for General Psychology and Cognitive Neuroscience, Institute of Psychology, Friedrich Schiller University of Jena, Jena, Germany, ⁴Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany

Topic Area: LONG-TERM MEMORY: Episodic

Poster E83 The hippocampus promotes effective saccadic information gathering in humans

Heather D. Lucas¹, Melissa C. Duff², Neal J. Cohen¹; ¹University of Illinois Urbana-Champaign, ²Vanderbilt University

Topic Area: LONG-TERM MEMORY: Episodic

The Truth is Out There: Recall of Verifiable Poster F84 Naturalistic Events is Highly Accurate

Michael J. Armson^{1,2}, Nicholas Diamond^{1,2}, Daniela J. Palombo³, Margaret C. McKinnon⁴, Anthony Nazarov⁴, Brian Levine^{1,2}; ¹Baycrest, ²University of Toronto, ³Boston University, ⁴McMaster University

Topic Area: LONG-TERM MEMORY: Episodic

Poster E85 Overlap between fMRI novelty and recollection effects

Marianne de Chastelaine¹, Julia Mattson¹, Tracy Wang¹, Brian Donely¹, Michael Rugg¹; ¹The University of Texas at Dallas, USA Topic Area: LONG-TERM MEMORY: Episodic

Reactivation of Emotional Context during Poster F86 Successful Recollection: A Partial Least Squares Analysis

Holly Bowen¹, Elizabeth Kensinger¹; ¹Boston College Topic Area: LONG-TERM MEMORY: Episodic

Poster E87 The primacy of 'place' in neural representations of events containing people, places and objects

Jessica Robin^{1,2}, Sigal Gat Lazer², Bradley R. Buchsbaum^{1,2}, Morris Moscovitch^{1,2}; ¹University of Toronto, ²Rotman Research Institute, Baycrest Health Sciences

Topic Area: LONG-TERM MEMORY: Episodic

False memory for context and true memory for Poster E88 context similarly activate the parahippocampal cortex

Jessica M. Karanian¹, Scott D. Slotnick¹: ¹Boston College

Topic Area: LONG-TERM MEMORY: Episodic

Poster E89 How does the timing of acute stress modulate hippocampal connectivity following associative encoding?

Alexa Tompary¹, Elizabeth V. Goldfarb¹, Elizabeth A. Phelps¹, Lila Davachi¹; ¹New York University

Topic Area: LONG-TERM MEMORY: Episodic

Poster E90 Long-term retention of vocabulary in two phonetically similar foreign languages is aided when learning occurs in highly distinctive virtual reality environments

Joey Ka-Yee Essoe¹, Niccolo Reggente¹, Younji Hera Baek¹, Ai Aileen Ohno¹, Privanka Mehta¹, Alvin Vuong¹, Jesse Rissman¹; ¹University of California, Los Angeles

Topic Area: LONG-TERM MEMORY: Episodic

Poster E91 Ecological assessment of retrospective and prospective memory in early Alzheimer's disease: validity of a virtual reality task

Valentina La Corte^{1,2,4}, Valentine Facque^{1,2}, Maria Abram^{1,2}, Agnès Michon⁴, Aurélie Funkiewiez⁴, Bruno Dubois^{4,5}, Pascale Piolino^{1,2,3}; ¹Institute of Psychology, University Paris Descartes, Sorbonne Paris Cite, France, ²Inserm UMR 894, Center of Psychiatry and Neurosciences, Memory and Cognition Laboratory, Paris, France, ³University Institute of France, Paris, France, ⁴Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Départment de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France, ⁵Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225-INSERM U1127 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, Paris, France

Topic Area: LONG-TERM MEMORY: Episodic

Poster E92 Memory replay during sleep in human intracranial recordings

Jessica Creery¹, David Brang², Vernon Towle³, James Tao³, Shasha Wu³, Ken A. Paller¹; ¹Northwestern University, ²University of Michigan, ³University of Chicago

Topic Area: LONG-TERM MEMORY: Episodic

Poster E93 Long-Term Effects of Concussion and Contact History on Cognitive Function in Middle-Adulthood

Eleanna Varangis¹, Kelly Giovanello¹, Neil Mulligan¹, Kathleen Gates¹, Jessica Cohen¹, Kevin Guskiewicz¹; ¹The University of North Carolina at Chapel Hill

Topic Area: LONG-TERM MEMORY: Episodic

Poster E94 Multimodal Investigation of Neurobehavioral Dynamics – MINDs – in Emotional Distraction

Florin Dolcos¹, Matthew Moore¹, Alexandru Iordan², Yuta Katsumi¹, Ryan Larsen¹, Edward Maclin¹, Andrea Shafer³, Anthony Singhal⁴, Brad Sutton¹, Andrew Bagshaw⁵, Monica Fabiani¹, Gabriele Gratton¹; ¹University of Illinois at Urbana-Champaign, ²University of Michigan, ³National Institutes of Health, ⁴University of Alberta, ⁵University of Birmingham

Topic Area: METHODS: Neuroimaging

Poster E95 Whole brain mapping of functional connectivity pattern dissimilarity reveals focal changes in task-dependent coupling across reasoning, memory, and perception

Xiaoye Zuo¹, Andrew J. Westphal¹, Jesse Rissman¹; ¹University of California, Los Angeles

Topic Area: METHODS: Neuroimaging

Poster E96 Localizing Event-Related Potentials using New Approaches to Multi-source Minimum Variance Beamforming

Anthony Herdman¹, Alexander Moiseev², Urs Ribary²; ¹University of British

Columbia, Canada, ²Simon Fraser University, Canada

Topic Area: METHODS: Neuroimaging

Poster E97 Quantification for spatial variability of white matter hyperintensities

Jin-Ju Yang¹, Jong-Min Lee*¹, Hee Jin Kim², Sang Won Seo²; ¹Hanyang University, Seoul, Korea, ²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Topic Area: METHODS: Neuroimaging

Poster E98 fMRI Task Comparison for Pre-surgical Language Mapping in Neurosurgical Patients

Prashin Ūnadkat¹, Luca Fumagalli¹, Laura Rigolo¹, Alexandra Golby¹, Yanmei Tie¹; ¹Brigham and Women's Hospital, Harvard Medical School Topic Area: METHODS: Neuroimaging

Poster E99 Distinct spatiotemporal patterns of resting state neuronal synchrony in Alzheimer's disease spectrum

Kamalini G Ranasinghe¹, Leighton B Hinkley², Alexander J Beagle¹, Alice La¹, Danielle Mizuiri², Susanne Honma², John F Houde³, Bruce L Miller¹, Keith A Vossel^{1,4}, Srikantan Nagarajan²; ¹University of California San Francisco, Memory and Aging Center, ²University of California San Francisco, Biomagnetic Imaging Laboratory, ³University of California San Francisco, Speech Neuroscience Laboratory, ⁴Gladstone Institute of Neurological Disease

Topic Area: METHODS: Neuroimaging

Poster E100 Residual relationships between motion and BOLD activity remain after preprocessing and can inflate functional connectivity estimates

Lisa Byrge¹, Daniel P. Kennedy¹; ¹Indiana University

Topic Area: METHODS: Neuroimaging

Poster E101 NITRC's Triad of Services: Software, Data, Compute

Christian Haselgrove¹, David Kenney², Nina Preuss³, Robert Buccigrossi³, Matt Travers³, Albert Crowley³, Giorgio Ascoli¹, Steven Bressler¹, Arnaud Delorme¹, Karl Helmer¹, Li Shen¹; ¹Neuromorphometrics, Inc, ²David N Kennedy Consulting, ³Turner Consulting Group

Topic Area: METHODS: Neuroimaging

Poster E102 Spread of Activity Following TMS is correlated with Intrinsic Resting Connectivity with the Target Region: A concurrent TMS-fMRI study

Colin Hawco¹, Aristotle Voineskos¹, Jennifer Steeves², Erin Dickie¹, Joseph Viviano¹, Jeff Daskalakis¹; ¹Centre for Addiction and Mental Health, ²York University

Topic Area: METHODS: Neuroimaging

Poster E103 Dopamine D2/3 receptor binding with [11C]raclopride in extrastriatal regions show good to excellent six month test-retest reliability

Lars Jonasson¹, Nina Karalija¹, Jan Axelsson¹, Katrine Riklund¹, Lars Nyberg¹, CJ Boraxbekk^{1,2}; ¹Umeå University, Sweden, ²Copenhagen University Hospital Hvidovre, Denmark

Topic Area: METHODS: Neuroimaging

Poster E104 Face and place selectivity develop in tandem with the visual field representations along the VTC in children

Golijeh Golarai¹, Alina Liberman¹, Kalanit Grill-Spector¹; ¹Stanford University Topic Area: PERCEPTION & ACTION: Development & aging

Poster E105 Rapid visual categorization reveals disrupted ventral stream processing in early Alzheimer's disease

Leslie Y. Lai¹, Elena K. Festa¹, Thomas Serre¹, Brian R. Ott², William C. Heindel¹; ¹Brown University, ²Alpert Medical School of Brown University Topic Area: PERCEPTION & ACTION: Development & aging

Poster E106 Discrimination of Magnitudes within Different Dimensions: A Developmental Trajectory Outline

Shai Itamar¹, Avishai Henik^{1,2}; ¹Department of Psychology and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel, ²Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Topic Area: PERCEPTION & ACTION: Development & aging

Poster E107 Intercultural differences in the acquisition of cognitive skills related to reading readiness

Pilar Sellés¹, Liz C. Ysla², Vicenta Āvila³, Tomás Martinez³, Eva Rosa¹;
¹Universidad Católica de Valencia, ²IESPP CREA, Perú, ³Universidad de Valencia

Topic Area: PERCEPTION & ACTION: Development & aging

Poster E108 The "temporal synchrony" method for identifying multisensory brain regions using fMRI

W. Dale Stevens¹, Stephanie M. Lavoie¹, Ryan A. Stevenson², Morgan D. Barense³, Mark T. Wallace⁴, James M. Bebko¹; ¹York University, ²University of Western Ontario, ³University of Toronto, ⁴Vanderbilt University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E109 Changes in EEG and movement kinematics accompany sensorimotor learning in immersive virtual reality

Greg Appelbaum¹, Jillian Clements², Hrishikesh Rao², Rajan Khanna¹, David Zielinski², Yvonne Lu¹, Kelly Vittetoe¹, Nicholas Potter², Regis Kopper², Marc Sommer²; ¹Duke University School of Medicine, ²Duke University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E110 Locus of hunger and amygdala activation to a sweet taste in Hispanic young adults

Jacquelyn Szajer¹, Aaron Jacobson², Claire Murphy^{1,2}; ¹SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, ²San Diego State University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E111 Exploring the synchronization features of the sensorimotor integration of speech

M Florencia Assaneo¹, David Poeppel^{1,2}; ¹New York University, Psychology Department, ²Max Planck Institute

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E112 A Colorful Advantage in Iconic Memory

Radhika Gosavi 1 , Edward Hubbard 1 ; 1 University of Wisconsin-Madison

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E113 The influence of interoceptive and exteroceptive attention on somatosensory alpha power and tactile perception

Matt Craddock¹, Ellen Poliakoff², Wael El-deredy², Ekaterini Klepousniotou¹, Donna Lloyd¹; ¹School of Psychology, University of Leeds, ²School of Psychologogical Sciences, University of Manchester

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E114 The effect of cue-evoked expectation on different pain sensations

Emily Hird^{1,3}, Deborah Talmi^{1,2}, Anthony Jones^{1,3}, Wael El-Deredy^{1,3,4}; ¹University of Manchester, ²University of Princeton, ³Salford Royal NHS Foundation Trust, ⁴Valparaiso University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E115 Redefining Color in Synesthesia

Madeleine Gorges¹, Arturo Hernandez¹, David Eagleman²; ¹University of Houston, ²Stanford University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E116 Integration of visual and motor object features in human cortex

Ariana M. Familiar¹, Heath Matheson¹, Sharon L. Thompson-Schill¹; ¹University of Pennsylvania

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E117 The Race May Be Over: Behavior and Neurophysiology Show Modality "Switch-Costs" Give Rise to Apparent Redundant Target Effect

Luke Shaw¹, Eric Nicholas¹, Matthew Braiman¹, Kamy Wakim¹, Ciara Molloy¹, Sophie Molholm², John Foxe^{1,2}; ¹University of Rochester, ²Albert Einstein College of Medicine

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E118 Oscillatory brain correlates of the hypnoticallyinduced out-of-body experience

Abraham Goldstein¹, Maor Zeev-Wolf¹, Yair Dor-Ziderman¹, Eitan G Abramowitz²; ¹Bar-Ilan University, ²Hadassah Medical Center and Hebrew University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E119 How we transmit memories to other brains: constructing shared neural representations via communication

Asieh Zadbood^{1,2}, Janice Chen^{1,2}, Yuan Chang Leong³, Kenneth Norman^{1,2}, Uri Hasson^{1,2}; ¹Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA., ²Department of Psychology, Princeton University, Princeton, NJ, 08544, USA., ³Department of Psychology, Stanford University, Stanford, CA, 94305, USA.

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E120 The human brain's navigation network when navigating without vision

Shachar Maidenbaum¹, Daniel-Robert Chebat², Amir Amedi¹; ¹Hebrew University of Jerusalem, ²Ariel University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster E121 Perceptual uncertainty of long-range apparent motion and the neural correlates underlying the resolution of this uncertainty in favor of the motion interpretation.

Yasuhiro Sakamoto¹, Yoshihito Shigihara², Michael Wibral³, Hideyuki Hoshi¹, David Poeppel^{1,4}, Winfried Menninghaus¹; ¹Max Planck Institute for Empirical Aesthetics, ²University College London, ³Goethe University Frankfurt, ⁴New York University

Topic Area: PERCEPTION & ACTION: Vision

Poster E122 The Conversion across Magnitude and Rank Forms of Numerical Representation

Mei-Jing Lin¹, Erik Chihhung Chang¹; ¹National Central University, Taiwan Topic Area: PERCEPTION & ACTION: Vision

Poster E123 Tagging the neurophysiological mechanisms of competition between task-relevant and concurrent emotionally arousing task-irrelevant visual information using simultaneously recorded electrocortical and hemodynamic signals

Nathan Petro¹, L. Forest Gruss¹, Siyang Yin¹, Mingzhou Ding¹, Andreas Keil¹; ¹University of Florida

Topic Area: PERCEPTION & ACTION: Vision

Poster E124 Hemifield-split fMRI repetition effects using chimeric faces

Matthew Harrison¹, Zhiheng Zhou¹, Lars Strother¹; ¹University of Nevada, Reno

Topic Area: PERCEPTION & ACTION: Vision

Poster E125 Repetition enhancement for partially repeated words in left occipitotemporal cortex

Zhiheng Zhou¹, Carol Whitney², Lars Strother¹; ¹Department of Psychology, University of Nevada, Reno, ²Independent Researcher

Topic Area: PERCEPTION & ACTION: Vision

Poster E126 Representation of object affordances in the posterior parietal lobe

Chenxiao Guan¹, Quanjing Chen¹, Colleen L. Schneider¹, Bradford Z. Mahon¹; ¹University of Rochester, USA

Topic Area: PERCEPTION & ACTION: Vision

Poster E127 Using EEG markers to investigate relations between negotiation styles and cognitive workload

Suzana Daher¹, Jadielson Moura¹, Ana Paula Costa¹; ¹Universidade Federal de Pernambuco

Topic Area: THINKING: Decision making

Poster E128 Do adolescents take more risks? It might depend on the development of statistical learning

Noémi Éltető¹, Karolina Janacsek^{1,2}, Andrea Kóbor³, Ádám Takács¹, Dezső Nemeth^{1,2}; ¹Eötvos Loránd University, Budapest, Hungary, ²Brain, Memory and Language Lab, Hungarian Academy of Sciences, Budapest, Hungary, ³Brain Imaging Centre, Hungarian Academy of Sciences, Budapest, Hungary

Topic Area: THINKING: Decision making

Poster E129 Goal-directed decision making incidentally recruits reinforcement learning mechanisms

Nora C Harhen¹, Anne GE Collins¹; ¹University of California, Berkeley Topic Area: THINKING: Decision making

Poster E130 Oxytocinergic modulation of human adaptive communication and broadband neuronal dynamics

Arjen Stolk¹, Idil Kokal², Miriam de Boer², Robert Oostenveld², Ivan Toni²;
¹Helen Wills Neuroscience Institute, UC Berkeley, ²Donders Institute, Radboud University Niimegen

Topic Area: THINKING: Decision making

Poster E131 Influence of other's choice behavior on observational learning

Nadège Bault¹, Tobias Larsen¹, Mehdi Khamassi², Luca Polonio¹, Alexander Vostroknutov¹, Giorgio Coricelli^{1,3}; ¹Center for Mind/Brain Sciences (Cimec), Trento, Italy, ²Institute for Intelligent Systems and Robotics, CNRS, Paris, France. ³University of Southern California, Los Angeles, USA

Topic Area: THINKING: Decision making

Poster E132 Anxiety differences in reducing reliance on preexisting biases by learning from outcome feedback

Cristina G. Wilson¹, Paul M. Whitney¹, John Hinson¹; ¹Washington State University

Topic Area: THINKING: Decision making

Poster E133 Pupillometry and Frontal Theta Reflect Decision Threshold Increases During Evidence Accumulation

Daniel Barto¹, James F. Cavanagh¹; ¹University of New Mexico

Topic Area: THINKING: Decision making

Poster E134 Feedback blunting due to sleep deprivation is affected by dopaminergic genotype

Hans Van Dongen¹, John Hinson¹, Paul Whitney¹, Brieann Satterfield¹, Michelle Schmidt¹, Jonathan Wisor¹; ¹Washington State University

Topic Area: THINKING: Decision making

Poster E135 Arousal-induced changes in functional brain networks during exploration and exploitation

Nathan Tardiff¹, Danielle S. Bassett¹, Sharon L. Thompson-Schill¹; ¹University of Pennsylvania

Topic Area: THINKING: Decision making

Poster E136 An event-related potential and time-frequency study of cognitive dissonance-elicited attitude change

Adam Burnett¹, Mario Liotti¹; ¹Simon Fraser University

Topic Area: THINKING: Decision making

Poster E137 Mechanisms of Information Accumulation across Speed-Accuracy Tradeoff

Christina M Merrick¹, Kate T Duberg¹, Anne GE Collins¹, Richard B Ivry¹;
¹University of California Berkeley

Topic Area: THINKING: Decision making

Poster E138 Funding Opportunities at the National Science Foundation

Alumit Ishai1; 1National Science Foundation

Topic Area: OTHER

Poster Session F

Poster F1 Reconstructing Changes in the Spatial Deployment of Attention According to Environmental Statistical Structure

Anthony W. Sali¹, Tobias Egner¹; ¹Duke University

Topic Area: ATTENTION: Spatial

Poster F2 Spatial attention reduces visual cortical 1/f neural noise

Tam Tran¹, Adam Gazzaley², Bradley Voytek¹; ¹University of California, San Diego, ²University of California, San Francisco

Topic Area: ATTENTION: Spatial

Poster F3 The effects of alpha-band electrical stimulation of a fronto-parietal network on spatial attention.

Martine R. van Schouwenburg¹, Lynn Sörensen¹, Raza de Klerk¹, Leon C. Reteig¹, Heleen A. Slagter¹; ¹Brain & Cognition, Department of Psychology,

University of Amsterdam

Topic Area: ATTENTION: Spatial

Poster F4 Attentional bias to rapid affective picture presentations at 4 and 6 Hz

Valeria Bekhtereva¹, Matthias M. Müller¹; ¹University of Leipzig

Topic Area: ATTENTION: Spatial

Poster F5 Eye Movement Patterns During Scene Viewing Predict Clinical Individual Difference Measures

Taylor R. Hayes¹, John M. Henderson^{1,2}; ¹Center for Mind and Brain, University of California, Davis, ²Department of Psychology, University of California, Davis

Topic Area: ATTENTION: Spatial

Poster F6 The size of the focus of attention in touch: evidence from event related potentials

Elena Gherri¹; ¹University of Edinburgh Topic Area: ATTENTION: Spatial

Poster F7 Alpha-Band Activity Tracks Updates to the Content of Spatial Working Memory

Eren Gunseli¹, Joshua J. Foster¹, David W. Sutterer¹, Edward K. Vogel¹,

Edward Awh¹; ¹University of Chicago Topic Area: ATTENTION: Spatial

Poster F8 Towards a unified model of spatial neglect and its anatomical constituents

Radek Ptak^{1,2,3}, Armin Schnider^{1,2}, Elena Pedrazzini¹; ¹Medical school, Geneva University, Switzerland, ²Division of neurorehabilitation, University Hospitals Geneva, Switzerland, ³Faculty of psychology and educational sciences, Geneva University, Switzerland

Topic Area: ATTENTION: Spatial

Poster F9 Spatial expressions in German, English, Italian, Polish, and Persian

Katarzyna Stoltmann^{1,2}, Fereshteh Modarresi¹; ¹Zentrum für Allgemeine Sprachwissenschaft (ZAS), Berlin, Germany, ²Humboldt-Universität zu Berlin, Germany

Topic Area: ATTENTION: Spatial

Poster F10 The Modulation of Attentional Emotion Processing on the P300 Event-Related Potential in High-Anxiety and Low-Anxiety Individuals

Jeremy Andrzejewski¹, Trenton Tulloss¹, Robert Torrence¹, Lucy Troup¹;
¹Colorado State University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F11 The Role of THC Concentration on the Processing of Emotional Faces

Jacob Braunwalder¹, Julia Metlay¹, Robert Torrence¹, Lucy J Troup¹; ¹Colorado State University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F12 Select Surface-Based Morphometry Predicts Autism Symptom Severity

Hakeem Brooks¹, Taylor Wilson¹, David Anderson¹, Tracey A. Knaus², Helen Tager-Flusberg³, Jeremy D. Cohen¹; ¹Xavier University of Louisiana, ²Louisiana State University Health Sciences Center-New Orleans, ³Boston University School of Medicine

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F13 Empathy and psychological pain: The influence of First-hand Experience

Paria Yaghoubi Jami¹, Behzad Mansouri¹, Steve Thoma¹; ¹The University of Alabama

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F14 Does Prefrontal Cortex Activity Underlie Gender Differences in Emotion Regulation? Evidence from Transcranial Direct Current Stimulation

K. Elise Goubet¹, Evangelia G. Chrysikou¹; ¹University of Kansas Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F15 Does immediate versus diffuse threat evoke dissociable high-resolution functional imaging activation profiles from amygdala and bed-nucleus of the stria terminalis?

Lindsay Knight¹, Farah Naaz¹, Brooke Siers¹, Brendan Depue¹; ¹University of Louisville

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F16 Watching joint actions in dance synchronizes brain activity in expert and novice spectators

Guido Orgs¹, Adrian Williams², Staci Vicary¹; ¹Department of Psychology, Goldsmiths, University of London, ²Division of Psychology, Department of Life Sciences, Brunel University London

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F17 Tracing the neural carryover effects of anger and their relation to chronic-stress symptoms

Gadi Gilam^{1,2}, Adi Maron-Katz³, Tamar Lin¹, Efrat Kliper¹, Eyal Fruchter⁴, Ron Shamir^{5,6}, Talma Hendler^{1,2,6,7}; ¹Tel Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Weizmann 6, Tel Aviv, 64239, Israel, ²School of Psychological Sciences, Tel-Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel, ³Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, ⁴Division of Mental Health, Israeli Defense Force Medical Corp, Tel Hashomer, Military Mail 02149, Israel, ⁵Blavatnik School of Computer Science, Tel-Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel, ⁶Sagol School of Neuroscience, Tel-Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel, ⁷Sackler Faculty of Medicine, Tel-Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F18 Boosting Self-Esteem Through Remembering Relaxed Experience Suppresses Envy and Resultant Schadenfreude as Measured with Fmri

Shohei Yamazaki¹, Motoaki Sugiura¹, Kelssy H dos S Kawata¹, Yukako Sasaki¹, Rui Nouchi¹, Kohei Sakaki¹, Shigeyuki Ikeda¹, Ryuta Kawashima¹; ¹Tohoku University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F19 Resting-state functional connectivity in large-scale brain networks predicts neuroticism and extraversion in novel individuals

Wei-Ting Hsu¹, Monica D. Rosenberg¹, Dustin Scheinost¹, Emily S. Finn¹, R. Todd Constable¹, Marvin M. Chun¹; ¹Yale University

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F20 The Sound and the Fury: Late Positive Potential is Sensitive to Sound Affect

Darin Brown¹, James Cavanagh¹; ¹University of New Mexico Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F21 Sadness can be related to the approach motivation: Evidence from frontal alpha power asymmetry

Kohei Fuseda¹, Ayano Matsubara¹, Jun'ichi Katayama^{1,2}; ¹Kwansei Gakuin

University, ²Center for Applied Psychological Science (CAPS) Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F22 Resting connectivity between the amygdala and the ventral anterior cingulate cortex is associated with sympathetic reactivity to a trauma reminder

Olena Kleshchova^{1,2}, Jenna Rieder^{1,2}, Mariann Weierich^{1,2}; ¹Hunter College, The City University of New York, ²The Graduate Center, The City University of New York

Topic Area: EMOTION & SOCIAL: Emotional responding

Poster F23 Face Processing at 100 ms: the Effects of Race and Configuration

Clara Colombatto¹, Gregory McCarthy¹; ¹Yale University, New Haven, CT, 06511. USA

Topic Area: EMOTION & SOCIAL: Person perception

Poster F24 Implicit Associations Between Different Body Types and Foods in Women

Rebecca Lopas¹, Natalie Ceballos¹, Roger Samson¹, Reiko Graham¹; ¹Texas State University

Topic Area: EMOTION & SOCIAL: Person perception

Poster F25 Rhesus monkeys are able to discriminate facial identity and expression

Molly Flessert¹, Jessica Taubert¹, Ning Liu¹, Leslie Ungerleider¹; ¹Laboratory of Brain and Cognition, NIMH/NIH

Topic Area: EMOTION & SOCIAL: Person perception

Poster F26 Race, Facial Expression, and Weapon Identification: An Associative Priming Study

Arthur Barrera¹, Yesenia Padilla¹, Reiko Graham¹; ¹Texas State University Topic Area: EMOTION & SOCIAL: Person perception

Poster F27 Modulating vicarious tactile perception: Performance-specific outcomes of transcranial current stimulation of primary somatosensory cortex on empathy for touch

Natalie Bowling¹, Michael Banissy¹; ¹Goldsmiths College, University of London

Topic Area: EMOTION & SOCIAL: Person perception

Poster F28 Contextual self-relevance and valence modulate face processing differently in those with high versus low subclinical social anxiety

Sarah McCrackin¹, Roxane Itier¹; ¹University of Waterloo Topic Area: EMOTION & SOCIAL: Person perception

Poster F29 Investigating the Neural Basis of Shared Preferences and Affiliation

Harry Farmer¹, Antonia Hamilton¹; ¹University College London Topic Area: EMOTION & SOCIAL: Person perception

Poster F30 Neural representations of person types overlap with Theory of Mind regions

Connor Lane¹, Giulia V Elli¹, Marina Bedny¹; ¹Johns Hopkins University

Topic Area: EMOTION & SOCIAL: Person perception

Poster F31 Neural representations of face identity across photos, line drawings, and caricatures

Constantin Rezlescu^{1,2}, Stefano Anzellotti³, Alfonso Caramazza¹; ¹Harvard University, ²University College London, ³MIT

Topic Area: EMOTION & SOCIAL: Person perception

Poster F32 Into the Dogs' Brain: How Do Their Brains Process Emotional Human Faces?

Laura V. Cuaya¹, Raúl Hernández-Pérez¹, Luis Concha¹; ¹Institute of

Neurobiology, National Autonomous University of México Topic Area: EMOTION & SOCIAL: Person perception

Poster F33 Source Localization Indicates Anterior Superior Temporal Gyrus Involvement in Nonlinguistic Structured Sequence Processing and Natural Language Processing

Gretchen N.L. Smith¹, Gerardo E. Valdez¹, Anne M. Walk², John D. Purdy³, Christopher M. Conway¹; ¹Georgia State University, ²University of Illinois, ³Saint Louis University

Topic Area: EXECUTIVE PROCESSES: Other

Poster F34 The Reliability of Brain State Properties

Derek M. Smith¹, Yiran Zhao¹, Behnaz Yousefi¹, Shella D. Keilholz², Eric H. Schumacher¹; ¹Georgia Institute of Technology, ²Emory University

Topic Area: EXECUTIVE PROCESSES: Other

Poster F35 A role for the striatum in feedback contingency estimation during perceptual category learning

Lauren E. Vucovich¹, F. Gregory Ashby¹; ¹University of California, Santa Barbara

Topic Area: EXECUTIVE PROCESSES: Other

Poster F36 Effect of deep brain stimulation of the subthalamic nucleus in Parkinson's disease on verbal fluency

Friederike Leimbach¹, Socorro Pieters¹, Catherine Čheung¹, Leonora Wilkinson¹, Donna Page¹, Catherine Jones¹, Ludwig Zinzro¹, Marwan Hariz¹, Tom Foltynie¹, Patricia Limousin¹, Marjan Jahanshahi¹; ¹UCL Institute of Neurology

Topic Area: EXECUTIVE PROCESSES: Other

Poster F37 Inhibition and Updating Abilities Predict Dyslexia and Comorbid Dyslexia- Attention Deficit Hyperactivity Disorder in Children

Caoilainn Doyle¹, Lorraine Boran¹, Alan Smeaton¹, Geraldine Scanlon¹; ¹Dublin City University

Topic Area: EXECUTIVE PROCESSES: Other

Poster F38 The unique neural signatures of cognitive flexibility and inhibitory control across various task contexts

Raluca Petrican¹, Cheryl Grady^{1,2}; ¹Rotman Research Institute, ²University of Toronto

Topic Area: EXECUTIVE PROCESSES: Other

Poster F39 Placebo Brain Stimulation Affects Feelings of Agency and Neural Responses to Errors

Michiel van Elk¹, Suzanne Hoogeveen², Uffe Schjoedt³; ¹University of Amsterdam, ²University of Amsterdam, ³University of Arhus

Topic Area: EXECUTIVE PROCESSES: Other

Poster F40 The influence of different feature repetition conditions on the sequential modulation of the Simon effect: An EEG study

Katharina Hoppe¹, Kristina Küper¹, Edmund Wascher¹; ¹Leibniz Research Centre for Working Environment and Human Factors (IfADo)

Topic Area: EXECUTIVE PROCESSES: Other

Poster F41 Decoding Free Choices: Influences of Unconscious Priming on Voluntary Actions

Martyn Teuchies¹, Jelle Demanet¹, Nura Sidarus², Patrick Haggard², Michaël Stevens¹, David Wisniewski¹, Marcel Brass¹; ¹Ghent University, ²University College London

Topic Area: EXECUTIVE PROCESSES: Other

Poster F42 Learning of Adjacent and Non-adjacent Regularities in a Visuo-Syllabic Sequential Learning Task Using EventRelated fMRI

Leyla Eghbalzad¹, Joanne Deocampo¹, Gretchen Smith¹, Gerardo Valdez¹, Sabrina Na¹, Tricia King¹, Christopher Conway¹; ¹Georgia State University Topic Area: EXECUTIVE PROCESSES: Other

Poster F43, Neuroanatomical Substrates Underlying the Relationship Between Body Mass and Cognitive Functioning

Leonard Faul¹, Kathryn M. Mattingly¹, Brendan E. Depue¹; ¹University of Louisville

Topic Area: EXECUTIVE PROCESSES: Other

Poster F44 Impulsivity and the Reward System: Negative and Positive Urgency are Associated with Neural Reward Sensitivity

Michelle Rogers¹, Heather Soder¹, Geoffrey Potts¹; ¹University of South Florida

Topic Area: EXECUTIVE PROCESSES: Other

Poster F45 Pre- and Post-treatment Effects on Resting-State Functional Connectivity in Women Diagnosed with Breast Cancer

Omid Kardan¹, Scott Peltier², Bratislav Misic³, Mary Askren⁴, Misook Jung⁵, Nathan Churchill⁶, Patricia Reuter-Lorentz², Bernadine Cimprich², Marc Berman¹; ¹University of Chicago, ²University of Michigan, ³Montreal Neurological Institute, ⁴University of Washington Seattle, ⁵Chungnam National University, ⁶Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital

Topic Area: EXECUTIVE PROCESSES: Other

Poster F46 Alpha-Band Power: Relevance to Visual Short-Term Memory Maintenance and Ongoing Visual Sensory Processing.

Andrew Heinz¹, Jeffrey Johnson¹; ¹North Dakota State University Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F47 Rapid synaptic plasticity as a substrate for working memory maintenance

Eelke Spaak¹, Christos Constantinidis², John Duncan^{1,5}, Timothy Buschman³, Earl Miller⁴, Mark Stokes¹; ¹University of Oxford, ²Wake Forest University, ³Princeton University, ⁴Massachusetts Institute of Technology, ⁵University of Cambridge

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F48 Synchronous Beta Rhythms of Frontoparietal Networks Support Only Behaviorally Relevant Representations

Evan G. Antzoulatos^{1,2}, Earl K. Miller¹; ¹Massachusetts Institute of Technology, ²University of California, Davis

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F49 Exploring Grey and White Matter Correlates of Verbal Working Memory Using Structural Imaging

Maria Ivanova^{1,2}, Olga Dragoy^{1,3}, Svetlana Kuptsova^{1,4}, Akinina Yulia^{1,5}, Petryshevskii Alexey⁴, Fedina Oksana⁴, Dronkers Nina^{1,2,6}; ¹National Research University Higher School of Economics, Moscow, Russia, ²Center for Aphasia and Related Disorders, VA Northern California Health Care System, Martinez, California, USA, ³Moscow Research Institute of Psychiatry, Moscow, Russia, ⁴Center for Speech Pathology and Neurorehabilitation, Moscow, Russia, ⁵University of Groningen, Groningen, The Netherlands, ⁶University of California, Davis, California, USA

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F50 Superior Longitudinal Fasciculus and Working Memory Functions Post Stroke: A Diffusion Tensor Imaging Study

Parminder Kaur¹, Alexandra L. Borstad¹, Petra Schmalbrock², Nick Hohman¹, Deborah S. Nichols-Larsen¹; ¹School of Health and Rehabilitation Sciences, The Ohio State University, ²Department of Radiology, College of Medicine, The Ohio State University

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F51 Corticostriatal activity during task-free fMRI to predict cognitive control performance

Alan Ceaser¹, Jong Yoon¹; ¹Stanford University Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F52 Neural Mechanisms underlying the Precision of Visual Working Memory Representation

Yijie Zhao¹, Yixuan Ku¹; ¹East China Normal University, Shanghai, China Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F53 Delay-period functional connectivity between IPS and occipital cortex relates to the precision of visual working memory

Qing Yu¹, Olivia Gosseries^{1,2}, Bradley Postle¹; ¹University of Wisconsin-Madison, ²University of Liege, Belgium

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F54 Does the binding of a feature into a multidimensional object protect it from inferference in visual working memory?

Muhammet Ikbal Sahan^{1,2}, Andrew Douglas Sheldon¹, Bradley Postle¹; ¹Dept. of Psychiatry, University of Wisconsin-Madison, USA, ²Dept. of Experimental Psychology, Ghent University, Belgium

Topic Area: EXECUTIVE PROCESSES: Working memory

Poster F55 Oscillatory dynamics differ between nonverbal/minimally-verbal children with ASD and controls during processing of a picture-word matching paradigm.

Silvia Ortiz-Mantilla¹, Chiara Cantiani², Valerie L. Shafer³, April A. Benasich¹;
¹Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewark, NJ, USA,
²Scientific Institute IRCCS Eugenio Medea, Bosisio Parini,
Lecco, Italy,
³The Graduate Center, City University of New York, New York,
USA

Topic Area: LANGUAGE: Development & aging

Poster F56 Disrupted Language Networks Following Childhood Poverty

Suzanne Perkins¹, Shaun Ho², James Swain²; ¹University of Michigan, ²Stony Brook University

Topic Area: LANGUAGE: Development & aging

Poster F57 Speech-evoked complex Auditory Brain Response (cABR) and Frequency Following Response (FFR) in the Neonatal Intensive Care Unit (NICU)

Gabriella Musacchia^{1,2}, Jiong Hu¹, Matthew Fitzgerald², Meiling Tong³; ¹University of the Pacific, ²Stanford Medical School, ³Nanjing Maternity and Child Health Care Hospital

Topic Area: LANGUAGE: Development & aging

Poster F58 Investigating the relationship between socioeconomic status, reading ability and white matter: A longitudinal investigation

Stephanie Del Tufo¹, Laurie Cutting¹; ¹Vanderbilt University

Topic Area: LANGUAGE: Development & aging

Poster F59 Biomarkers of Children's Standardized Academic Achievement Using Neuroelectric Measures of Language Processing

Mark Scudder¹, Kara Federmeier², Eric Drollette², Lauren Raine³, Shih-Chun Kao², Naiman Khan², Arthur Kramer³, Charles Hillman³; ¹University of Pittsburgh, ²University of Illinois at Urbana-Champaign, ³Northeastern University, Boston, MA

Topic Area: LANGUAGE: Development & aging

Poster F60 Speeded phonological processing in children with Tourette syndrome

Cristina Dye¹, Matthew Walenski², Stewart H. Mostofsky³, Michael T. Ullman⁴; ¹Newcastle University, ²Northwestern University, ³Johns Hopkins University, ⁴Georgetown University

Topic Area: LANGUAGE: Development & aging

Poster F61 Induced oscillations during speaking distinguish variants of primary progressive aphasia

Leighton Hinkley¹, Megan Cahill-Thompson¹, Zachary Miller², Kamalini Ranasinghe², Bruce Miller², Keith Vossel², John Houde¹, Marilu Gorno-Tempini², Srikantan Nagarajan¹; ¹University of California, San Francisco, Department of Radiology and Biomedical Imaging, ²University of California, San Francisco, Memory and Aging Center

Topic Area: LANGUAGE: Development & aging

Poster F62 Comprehension of code-mixed sentences in bilingual elders: An event-related potentials (ERP) study

Chia-Hsuan Liao^{1,2}, Shiao-Hui Chan²; ¹University of Maryland, ²National Taiwan Normal University

Topic Area: LANGUAGE: Development & aging

Poster F63 Text type matters during reading development: informational texts require specialized brain networks compared to stories

Katherine Aboud¹, Stephen Bailey¹, Jonathan Scheff¹, Laurie Cutting¹; ¹Vanderbilt University

Topic Area: LANGUAGE: Development & aging

Poster F64 Advance Paternal Age Effects on Offspring Academic Ability: The Role of Thalamic Maturation Links APA and Reading

Zhichao Xia^{1,2}, Cheng Wang¹, Maaike Vandermosten^{1,3}, Roeland Hancock¹, Fumiko Hoeft^{1,4,5}; ¹University of California, San Francisco, ²Beijing Normal University, ³University of Leuven, ⁴Yale University, ⁵Keio University

Topic Area: LANGUAGE: Development & aging

Poster F65 Frontal and Central Sleep Spindles are Correlated with Cognition and Language in Napping Infants

Sue E. Peters¹, April A. Benasich²; ¹Behavioral and Neural Science Graduate Program, Rutgers University - Newark, NJ, ²Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, NJ

Topic Area: LANGUAGE: Development & aging

Poster F66 Bilingual Proficiency is Associated with Cortical Responses During Language Processing

Rebecca Marks¹, Zhichao Xia², Roeland Hancock², Yuuko Uchikoshi³, Ioulia Kovelman¹, Fumiko Hoeft²; ¹University of Michigan, ²University of California, San Francisco, ³University of California, Davis

Topic Area: LANGUAGE: Other

Poster F67 An electrophysiological investigation of noisy channel sentences

Veena Dwivedi¹, Victoria Witte¹, Janahan Selvanayagam¹, Edward Gibson²;
¹Brock University.
²MIT

Topic Area: LANGUAGE: Syntax

Poster F68 Tracing the interplay between syntactic and lexical features: fMRI evidence from agreement comprehension.

Ileana Quinones¹, Nicola Molinaro^{1,2}, Horacio Barber³, Manuel Carreiras^{1,2,4}; ¹Basque Center on Cognition, Brain and Language, Donostia, Spain, ²IKERBASQUE. Basque Foundation for Science. Bilbao, Spain, ³Universidad de La Laguna, Tenerife, Spain, ⁴University of the Basque Country, UPV/EHU. Bilbao, Spain

Topic Area: LANGUAGE: Syntax

Poster F69 An fMRI investigation of argument structure and syntactic selection

William Matchin¹, Chia-Hsuan Liao², Phoebe Gaston², Ellen Lau²; ¹UC San Diego, ²University of Maryland

Topic Area: LANGUAGE: Syntax

Poster F70 A mechanism for the cortical computation of hierarchical linguistic structure

Andrea E. Martin^{1,2}, Leonidas A. A. Doumas¹; ¹University of Edinburgh, ²Max Planck Institute for Psycholinguistics

Topic Area: LANGUAGE: Syntax

Poster F71 The spatio-temporal dynamics of language processing: combining computational linguistics and RSA with MEG data

Barry Devereux¹, Billi Randall¹, William Marslen-Wilson¹, Lorraine Tyler¹; ¹University of Cambridge

Topic Area: LANGUAGE: Syntax

Poster F72 Neural Consequences of Syntactic Surprisal during Reading

Trevor Brothers¹, Matthew W. Lowder¹, John M. Henderson¹, Fernanda Ferreira¹, Matthew J. Traxler¹, Tamara Y. Swaab¹; ¹University of California, Davis

Topic Area: LANGUAGE: Syntax

Poster F73 Behavioral and Neural Evidence for the Effects of Verb Bias and Syntactic Surprisal on Sentence Processing

Kathryn Bousquet¹, Tamara Swaab¹, Debra Long¹; ¹University of California, Davis

Topic Area: LANGUAGE: Syntax

Poster F74 Low expectations: An ERP investigation of cuebased anticipatory processing in low constraint sentences

Kailen Shantz¹, Darren Tanner¹; ¹University of Illinois at Urbana-Champaign Topic Area: LANGUAGE: Syntax

Poster F75 The neurobiology of prosody and sentence structure: a functional MRI study

Arianna LaCroix¹, Lisa Johnson¹, Nicole Blumenstein¹, Sharmeen Maze², Leslie C. Baxter², Corianne Rogalsky¹; ¹Arizona State University, ²Keller Center for Imaging Innovation, Barrow Neurological Institute & St. Joseph's Hospital and Medical Center

Topic Area: LANGUAGE: Syntax

Poster F76 Electrophysiology of Prosodic and Lexical Influences on Sentence Processing in Broca's Aphasia

Shannon Sheppard¹, Tracy Love^{1,2}, Katherine J. Midgley¹, Phillip J. Holcomb¹, Lewis P. Shapiro¹; ¹San Diego State University, ²University of California, San Diego

Topic Area: LANGUAGE: Syntax

Poster F77 Age differences in event-related potential effects associated with strong and weak recollection

Erin Horne¹, Joshua Koen¹, Nedra Hauck¹, Michael Rugg¹; ¹University of Texas at Dallas

Topic Area: LONG-TERM MEMORY: Episodic

Poster F78 Sequencing Effects on the Retention of Generalized Knowledge and Source Memory

Sharon Noh1, Alison Preston1; 1University of Texas at Austin

Topic Area: LONG-TERM MEMORY: Episodic

Poster F79 Relative order judgements of the past and the future

Inder Singh¹, Marc Howard¹; ¹Boston University Topic Area: LONG-TERM MEMORY: Episodic

Poster F80 Improving Memory by Biasing Awake Memory Reactivation

Kylie H. Alm¹, Chi T. Ngo¹, Ingrid R. Olson¹; ¹Temple University

Topic Area: LONG-TERM MEMORY: Episodic

Poster F81 Memory strengthening via multiple labilizationreconsolidation cycles: a replication study

Enmanuelle Pardilla Delgado¹, Cecilia Forcato², Jessica D. Payne¹; ¹University of Notre Dame, ²Universidad de Quilmes

Topic Area: LONG-TERM MEMORY: Episodic

Poster F82 Dynamic functional connectivity of overt and covert autobiographical memory retrieval

Charles Ferris¹, Cory Inman¹, Andrew James², Stephan Hamann¹; ¹Emory University, ²University of Arkansas for Medical Sciences

Topic Area: LONG-TERM MEMORY: Episodic

Poster F83 Neural correlates of true and false memory vividness

Sarah Kark¹, Stephanie Sherman¹, Ryan Daley¹, Scott Slotnick¹, Elizabeth Kensinger¹; ¹Boston College

Topic Area: LONG-TERM MEMORY: Episodic

Poster F84 Functional connectivity between the dorsomedial thalamus and the medial temporal lobe supports familiarity memory

Alex Kafkas¹, Elizabeth Keene¹, Andrew Mayes¹, Daniela Montaldi¹;
¹Memory Research Unit, Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester

Topic Area: LONG-TERM MEMORY: Episodic

Poster F85 Functional dissociation and specialization of dentate gyrus and CA3 hippocampal subfields during episodic future thinking

Paul F. Hill¹, Tobias Sweeney¹, Gabriel A. Devenyi^{2,3}, Mallar Chakravarty^{2,3}, Rachel A. Diana¹; ¹Virginia Tech, ²Douglas Mental Health University Institute, ³McGill University

Topic Area: LONG-TERM MEMORY: Episodic

Poster F86 Mnemonic prediction errors modulate hippocampal connectivity patterns

Oded Bein¹, Katherine Duncan², Lila Davachi¹; ¹New York University, ²University of Toronto

Topic Area: LONG-TERM MEMORY: Episodic

Poster F87 Attentional Focusing at Encoding Contributes to Subsequent Memory

Benjamin R Geib¹, Roberto Cabeza¹, Marty G Woldorff¹; ¹Duke University Topic Area: LONG-TERM MEMORY: Episodic

Poster F88 Sleep relates to the pattern representation and behavioral stability of memories

Emily Cowan¹, Anli Liu², Sanjeev Kothare², Orrin Devinsky², Lila Davachi¹; ¹New York University, ²NYU Langone School of Medicine Topic Area: LONG-TERM MEMORY: Episodic

Poster F89 The anterior prefrontal cortex and the hippocampus are negatively correlated during false memories

Brittany M. Jeve¹, Jessica M. Karanian¹, Scott D. Slotnick¹; ¹Boston College Topic Area: LONG-TERM MEMORY: Episodic

Poster F90 Signed reward prediction errors drive declarative learning

Esther De Loof¹, Kate Ergo¹, Lien Naert¹, Clio Janssens¹, Filip Van Opstal^{2,3}, Tom Verguts¹; ¹Ghent University, Belgium, ²Université Libre de Bruxelles, Belgium, ³University of Amsterdam, Netherlands

Topic Area: LONG-TERM MEMORY: Episodic

Poster F91 Impact of preparatory attention on subsequent memory: individual differences in cortical oscillations

Anna Khazenzon¹, Shao Fang Wang¹, Stephanie Zhang¹, Alex Gonzalez¹, Stephanie Gagnon¹, Monica Thieu¹, Melina Uncapher², Anthony Wagner¹; ¹Stanford University, ²University of California, San Francisco

Topic Area: LONG-TERM MEMORY: Episodic

Stress Effects on Memory are Context Dependent Poster F92

Matthew Sazma¹, Andrew McCullough¹, Andy Yonelinas¹; ¹UC Davis

Topic Area: LONG-TERM MEMORY: Episodic

Poster F93 Hippocampus supports unconscious what-wherewhen memory formation: an fMRI study

Else Schneider^{1,2}, Roland Wiest³, Katharina Henke^{1,2}; ¹University of Bern, Bern, Switzerland, ²Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland, ³Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland

Topic Area: LONG-TERM MEMORY: Episodic

Episodic cueing reduces temporal discounting in Poster F94 individuals with damage to the ventromedial prefrontal cortex

Flavia De Luca^{1,2}, Donna Kwan³, Francesca Bianconi², Violetta Knyagnytska^{2,3}, Carl Craver⁴, Elisa Ciaramelli^{1,2}, R. Shayna Rosenbaum^{3,5}; ¹Università di Bologna, Italia, ²Centro studi e ricerche in Neuroscienze Cognitive, Università di Bologna, Cesena, Italia, ³York University, Toronto, Ontario, Canada, ⁴Washington University, St. Louis, USA, ⁵Rotman Research Institute, Baycrest, Toronto, Canada

Topic Area: LONG-TERM MEMORY: Episodic

Poster F95 Modulation of oscillatory power and connectivity in the human posterior cingulate cortex supports the encoding and retrieval of episodic memories

Bradley Lega¹, Michael Rugg², James Germi¹; ¹University of Texas-Southwestern Medical Center, ²Universwity of Texas at Dallas

Topic Area: LONG-TERM MEMORY: Episodic

Poster F96 Task Evoked Dynamics in Whole Brain HMM Brain States

Andrew Quinn¹, Eva Patai^{1,4}, Diego Vidarre^{1,3}, Anna Nobre^{1,2}, Mark Woolrich^{1,3}; ¹Oxford Centre for Human Brain Activity, University of Oxford, ²Department of Experimental Psychology, University of Oxford, ³Oxford Centre for Functional MRI of the Brain, University of Oxford, ⁴Institute of Behavioural Neuroscience, University College London.

Topic Area: METHODS: Neuroimaging

Poster F97 Defining the Human Olfactory Network: A **Functional Connectome Analysis**

Thomas Arnold¹, Yuqi You¹, Ivan de Araujo², Mingzhou Ding³, Wen Li¹; ¹Florida State University, ²Yale University, ³University of Florida Topic Area: METHODS: Neuroimaging

Poster F98 Non-invasive Brain Imaging Biomarkers in Sudden **Unexpected Death in Epilepsy Patients (SUDEP)**

Chaeyeon Kim¹, Justin Jangyoon Choi¹, Richard Lee¹; ¹New York University Topic Area: METHODS: Neuroimaging

Poster F99 Minimizing researcher bias and improving statistical power in the analysis of Event-Related Potentials with condition inference random forests (cForest)

Francesco Usai¹, Antoine Tremblay^{1,2}, Kiera O'Neil¹, Aaron J. Newman¹; ¹Dalhousie University, ²Saint Mary's University

Topic Area: METHODS: Neuroimaging

Poster F100 Associations between sleep duration and structural and functional brain MRI measures in the UK Biobank cohort

Claire Sexton¹, Kai Spiegelhalder², Stephen Smith¹, Heidi Johansen-Berg¹, Debbie Lawlor³, Martin Rutter⁴, Simon Kyle¹; ¹University of Oxford, ²University of Freiburg, ³University of Bristol, ⁴University of Manchester

Topic Area: METHODS: Neuroimaging

Poster F101 Semi-Automation of a Reliable Method for Measuring Human Insular Cortex

Aliyah Jones¹, David Stephenson, M.S.², Allen L. Reiss, M.D.³, Elliott Beaton, Ph.D.², Jeremy D. Cohen, Ph.D.¹; ¹Xavier University of Louisiana, ²University of New Orleans

Topic Area: METHODS: Neuroimaging

Poster F102 Identification of frontal-striatal circuits with simultaneous TMS-fMRI

Christopher Muse-Fisher¹, Justin Riddle¹, Jason Scimeca¹, Mark D'Esposito¹; ¹UC Berkeley

Topic Area: METHODS: Neuroimaging

Poster F103 Effects of age on extrastriatal dopamine D2 receptor availability are overestimated without partial volume correction

Jennifer L. Crawford¹, Kendra L. Seaman¹, Aishwarya Vijay¹, David Matuskey¹, Evan D. Morris¹, Gregory R. Samanez-Larkin¹; ¹Yale University Topic Area: METHODS: Neuroimaging

Poster F104 An evaluation of fNIRS preprocessing techniques using concurrent fNIRS-fMRI measurements

Aaron M. Piccirilli¹, S.M. Hadi Hosseini¹, Joseph M. Baker¹, Jennifer L. Bruno¹, Andrew Gundran¹, Zachary Stuart¹, Lene K. Harbott¹, J. Christian Gerdes¹, Allan L. Reiss¹; ¹Stanford University

Topic Area: METHODS: Neuroimaging

Language lateralization assessed by magnetoencephalography imaging using three different language tasks

Elke De Witte¹, Leighton Hinkley¹, Danielle Mizuiri¹, Coleman Garrett¹, Susanne Honma¹, Heidi Kirsch¹, John Houde¹, Mitchel Berger¹, Sri Nagarajan1; 1University of California, San Francisco

Topic Area: METHODS: Neuroimaging

Poster F106 Anterior-Posterior Insular Cortex Bisection Plugin for Mango

Zachary Laborde¹, David Stephenson², Allan L. Reiss³, Elliott Beaton², Jeremy D. Cohen¹; ¹Xavier University of Louisiana, ²University of New Orleans, 3Stanford School of Medicine

Topic Area: METHODS: Neuroimaging

Poster F107 Treatment induced plasticity of motor and language networks in patients with brain lesions

Nina Sardesh¹, Lucia Bulubas², Tavish Traut¹, Danielle Mizuiri¹, Susanne Honma¹, Coleman Garrett¹, Avery Garrett¹, Mitchel Berger¹, Heidi Kersch¹, Phiroz Tarapore¹, Srikantan Nagarajan¹; ¹University of California, San Francisco, ²Technische Universitat Munchen, Munich, Germany

Topic Area: METHODS: Neuroimaging

Poster F108 Deep learning techniques for decoding EEG signatures of viewing or refreshing face, scene, and word stimuli

Jacob Williams¹, Ashok Samal¹, Matthew Johnson¹; ¹University of Nebraska - Lincoln

Topic Area: METHODS: Neuroimaging

Poster F109 The National Adult Reading Test and Wechsler Test of Adult Reading as measures of premorbid IQ: Comparison and Restandardisation against the Wechsler Adult Intelligence Scale – Fourth Edition.

Peter Bright¹, Ian van der Linde¹; ¹Anglia Ruskin University, Cambridge Topic Area: METHODS: Other

Poster F110 fMRI-guided theta burst stimulation to the superior temporal cortex impairs sentence processing.

Marina Bedny¹, Judy Kim¹, Gabriela Cantarero^{2,3}, Pablo Celnik²; ¹Johns Hopkins University, ²Johns Hopkins School of Medicine, ³Walter Reed Army Institute of Research

Topic Area: METHODS: Other

Poster F111 Edinburgh Handedness Inventory as a measure of motor imagery ability, not just handedness

Christopher Madan^{1,2}, Christopher Donoff², Anthony Singhal²; ¹Boston College, ²University of Alberta

Topic Area: METHODS: Other

Poster F112 Accounting for nonlinearities in models of language processing: Can linear regression get the job done?

Sean McWhinney¹, Kaitlyn Tagarelli¹, Antoine Tremblay¹, Aaron Newman¹;
¹Dalhousie University

Topic Area: METHODS: Other

Poster F113 Domain-specific accuracy of the Montreal Cognitive Assessment and the Mattis Dementia Rating Scale-2 in Parkinson's disease

Taylor Hendershott¹, Delphine Zhu¹, Seoni Llanes¹, Kathleen Poston^{1,2}; ¹Department of Neurology and Neurological Science, Stanford University School of Medicine, ²Department of Neurosurgery, Stanford University School of Medicine

Topic Area: METHODS: Other

Poster F114 Neural coding of odor "liking" and "wanting" in the olfactory sensory hierarchy

Sarah Baisley¹, Thomas Campbell Arnold¹, Jaryd Hiser², Lucas Novak¹, Takuya Sato³, Wen Li¹; ¹Florida State University, ²University of Wisconsin-Madison, ³Kikkoman Singapore R&D Laboratory PTE LTD

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F115 Multi-sensory Connections: Matching Stimuli across Auditory and Visual Domains

Lauren Hendrickson¹, Ferrinne Spector¹; ¹Edgewood College Topic Area: PERCEPTION & ACTION: Multisensory

Poster F116 Integration and segregation of task-specific areas during task preparation

Laura Quante^{1,2}, Daniel S. Kluger^{1,2}, Ricarda I. Schubotz^{1,2,3}; ¹Westfälische Wilhelms-Universität, Münster, Germany, ²Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Germany, ³University Hospital Cologne, Germany

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F117 AudioVisual Integration and Training in Hemianopia: A Neurocomputational Study

Elisa Magosso¹, Caterina Bertini¹, Cristiano Cuppini¹, Mauro Ursino¹; ¹University of Bologna, Italy

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F118 Mechanisms for Bayesian inference maturation in a biologically inspired neurocomputational model

Mauro Ursino¹, Cristiano Cuppini¹, Elisa Magosso¹; ¹University of Bologna, Italy

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F119 Alpha Matters: Alpha Oscillatory Activity Correlates With Sensory Profile Measures

Nika Kartvelishvili¹, Kevin Clancy¹, Sarah Baisley¹, Wen Li¹; ¹Florida State University

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F120 Startling Sounds Presented under Dark Adaptation Evoke Synesthetic Experiences

Anupama Nair^{1,2}, David Brang¹; ¹University of Michigan, ²University of Amsterdam

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F121 Word-Shape, Taste-Shape, and Taste Word-Shape Associations in Persons With Aphasia

Vijayachandra Ramachandra¹; ¹Marywood University Topic Area: PERCEPTION & ACTION: Multisensory

Poster F122 Differences in Neural Correlates of Error Correction in Auditory and Visual Sensorimotor Synchronization

Daniel Comstock¹, Ramesh Balasubramaniam¹; ¹University of California - Merced

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F123 Automatic Counting and Involuntary Polymodal Imagery (Involving Olfaction, Audition, Touch, Taste, and Vision)

Jamie Renna¹, Wei Dou¹, Sabrina Bhangal¹, Mark W. Geisler¹, Ezequiel Morsella^{1,2}; ¹San Francisco State University, ²University of California, San Francisco

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F124 Magnifying the view of the hand changes its cortical representation. A Transcranial magnetic stimulation study.

Elisabetta Ambron¹, Nicole White¹, Jared Medina², Branch Coslett¹;
¹Laboratory for Cognition and Neural Stimulation, Dept. of Neurology,
Perelman School of Medicine at the University of Pennsylvania, ²Department of Psychology, University of Delaware.

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F125 Tactile and visual motion processing in congenitally deaf humans

Agnes K. Villwock^{1,2}, Davide Bottari¹, Brigitte Roeder¹; ¹University of Hamburg, ²University of California San Diego

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F126 Decoding Across Senses the Representations of Everyday Objects from the Lateral Occipital Complex

Raúl Hernández-Pérez¹, Laura V. Cuaya¹, Luis Concha¹, Victor De Lafuente¹; ¹Instituto de Neurobiología, Universidad Nacional Autónoma de México

Topic Area: PERCEPTION & ACTION: Multisensory

Poster F127 Choosing to make an effort: the effect of reward on performance speed under risk

Xingjie Chen¹, Youngbin Kwak¹; ¹University of Massachusetts Amherst Topic Area: THINKING: Decision making

Poster F128 Neural Subjective Value Representations across Age and Discount Factors: Time Delay, Physical Effort, and Probability Discounting

Kendra Seaman¹, Nicholas Brooks¹, Teresa M. Karrer^{1,2}, Linh Dang³, Ming Hsu⁴, David H. Zald³, Gregory R. Samanez-Larkin¹; ¹Yale University, ²TU Dresden, ³Vanderbilt, ⁴University of California Berkeley

Topic Area: THINKING: Decision making

Poster F129 Altered feedback responses to negative gambling outcomes in combat PTSD

Matt Schalles^{1,2}, Nikki Honzel³, Jary Larsen¹, Felix Bacigalupo⁴, Carolyn Alderson¹, Diane Swick^{1,4}; ¹VA Northern California Health Care System, ²Mills College, ³Carroll College, ⁴UC Davis

Topic Area: THINKING: Decision making

Poster F130 Decoding the Representational Space of Decision Values using EEG

Pablo Morales¹, Atsushi Kikumoto¹, Ulrich Mayr¹; ¹University of Oregon Topic Area: THINKING: Decision making

Poster F131 Changes in information integration strategy in multi-cue probabilistic reasoning under anticipatory anxiety induced by threat-of-shock

Hanna Oh¹, Hitomi Tanaka¹, Jeffrey Beck¹, Kevin LaBar¹, Tobias Egner¹; ¹Duke University

Topic Area: THINKING: Decision making

Poster F132 Stengthening Goal-directed Decision Making through a Cognitive Intervention

Maria Eckstein¹, Anne Collins¹; ¹University of California at Berkeley

Topic Area: THINKING: Decision making

Poster F133 Medial Prefrontal Cortex Activation for Food Tracks Individual Differences in Food-reward Sensitivity

Timothy Kelley¹, Jason Van Allen¹, Tyler Davis¹; ¹Texas Tech University

Topic Area: THINKING: Decision making

Poster F134 On the Way to the Top: PINNACLE - A Theoretical Process-Model of Human Visual Category Learning

Ben Reuveni¹, Paul J. Reber¹; ¹Northwestern University

Topic Area: THINKING: Decision making

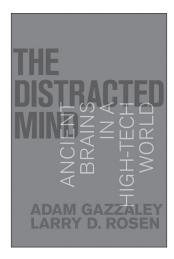
Poster F135 The role of thalamo-striatal interactions in human behavioural flexibility.

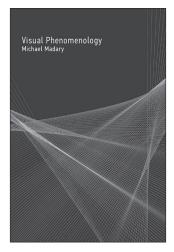
Tiffany Bell¹, Michael Lindner¹, Angela Langdon², Ying Zheng¹, Anastasia Christakou¹; ¹University of Reading, UK, ²Princeton University, USA

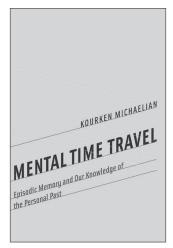
Topic Area: THINKING: Decision making

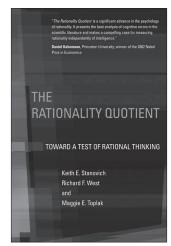
Poster F136 Ventromedial Prefrontal Cortex (VMPFC) Tracks Subjective Expectancy in a Gambler's Fallacy Task

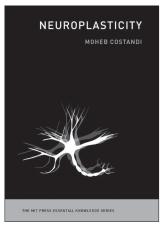
Kimberly Morris¹, Sean O'Bryan¹, Evan Livesey², Darell Worthy³, Tyler Davis¹; ¹Texas Tech University, ²University of Sydney, ³Texas A&M University

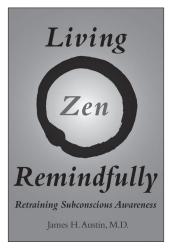

Topic Area: THINKING: Decision making

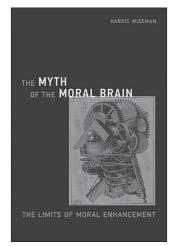

Poster F137 Cautious decision criterion drives widespread fronto-parietal fMRI activity across multiple domains

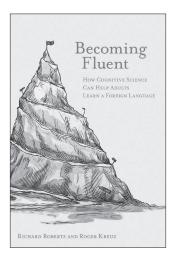

Evan Layher¹, Benjamin O. Turner¹, Nicole Marinsek¹, Puneeth Chakravarthula¹, Anjali Dixit¹, Amir H. Meghdadi¹, Barry Giesbrecht¹, Miguel


Eckstein¹, Michael Miller¹; ¹UCSB Topic Area: THINKING: Decision making


The MIT Press







The Distracted Mind

Ancient Brains in a High-Tech World

Adam Gazzaley and Larry D. Rosen

Why our brains aren't built for media multitasking, and how we can learn to live with technology in a more balanced way.

Hardcover | \$27.95 | £22.95

Neuroplasticity

Moheb Costandi

The real story of how our brains and nervous systems change throughout our lifetimes—with or without "brain training."

The MIT Press Essential Knowledge series Paperback | \$15.95 | £11.95

Open MIND

Philosophy and the Mind Sciences in the 21st Century

edited by Thomas Metzinger and Jennifer M. Windt

A unique interdisciplinary collection of papers and commentaries by leading researchers and rising scholars, representing the latest research on consciousness, mind, and brain.

Hardcover | \$285 | £233.95

Visual Phenomenology

Michael Madary

Phenomenological and empirical methods of investigating visual experience converge to support the thesis that visual perception is an ongoing process of anticipation and fulfillment

Hardcover | \$45 | £27.95

Living Zen Remindfully

Retraining Subconscious Awareness

James H. Austin, M.D.

A seasoned Zen practitioner and neurologist looks more deeply at mindfulness, connecting it to our subconscious and to memory and creativity.

Hardcover | \$32.95 | £27.95

The Pragmatic Turn

Toward Action-Oriented Views in Cognitive Science

edited by Andreas K. Engel, Karl J. Friston, and Danica Kragic

Experts from a range of disciplines assess the foundations and implications of a novel action-oriented view of cognition.

Strüngmann Forum Reports Hardcover | \$49 | £40.95

Mental Time Travel

Episodic Memory and Our Knowledge of the Personal Past

Kourken Michaelian

Drawing on current research in psychology, a new philosophical account of remembering as imagining the past.

Life and Mind series | Hardcover | \$43 | £35.95

The Myth of the Moral Brain

The Limits of Moral Enhancement

Harris Wiseman

"Wiseman injects a much-needed measure of scientific and political reality into one of the hottest debates in applied ethics today. The distinctions he draws in the course of his wide-ranging defense of human agency against reductionism may just succeed in rescuing the idea of moral enhancement from its staunchest advocates."

- Robert Sparrow, Centre for Human Bioethics, Monash University

Basic Bioethics series Hardcover | \$38 £31.95

The Rationality Quotient

Toward a Test of Rational Thinking

Keith E. Stanovich, Richard F. West, and Maggie E. Toplak

"A significant advance in the psychology of rationality. It presents the best analysis of cognitive errors in the scientific literature and makes a compelling case for measuring rationality independently of intelligence."

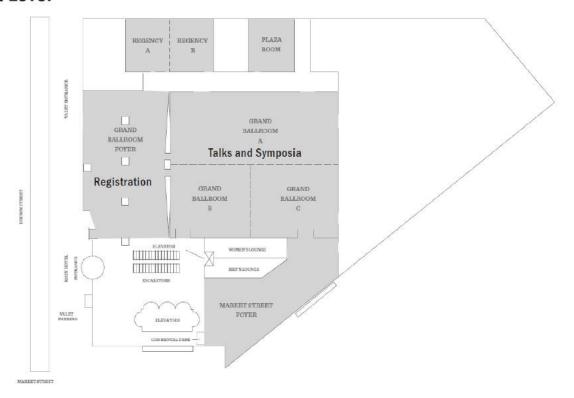
— Daniel Kahneman, Princeton University, winner of the 2002 Nobel Prize in Economics Hardcover | \$39 | £32.95

now in paperback

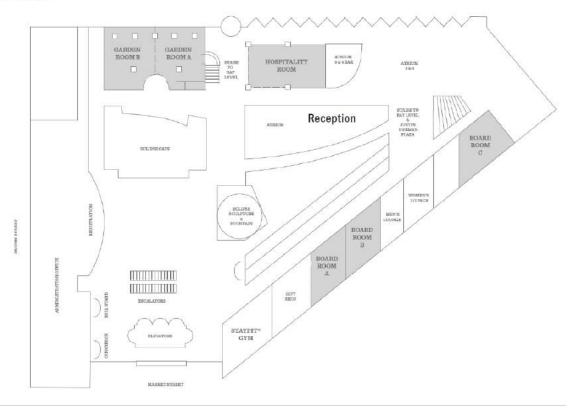
Becoming Fluent

How Cognitive Science Can Help Adults Learn a Foreign Language

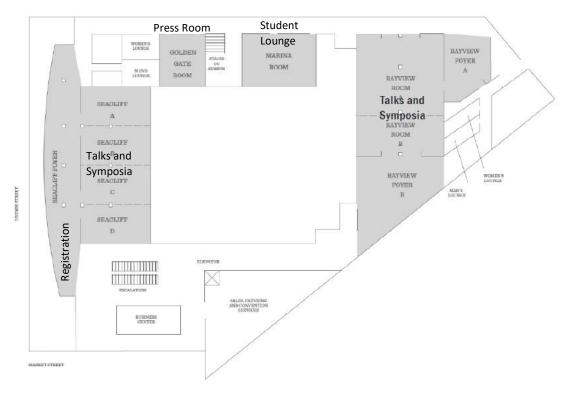
Richard Roberts and Roger Kreuz


How adult learners can draw upon skills and knowledge honed over a lifetime to master a foreign language.

Paperback | \$17.95 | £14.95


Visit the MIT
Press booth 202
for 30% off
all books

Hotel Floor Plan


Street Level

Atrium Level

Bay Level

Pacific Concourse

Recognizing excellence in Mobile Brain/Body Imaging research

Submission now open at www.mobi-award.com

Win a MoBI Package, consisting of:

- wireless EEG amplifier (LiveAmp)
- electrode cap with passive, active, dry or flat electrodes
- software package for signal recording and analysis

